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ABSTRACT

Jero, Samuel C. PhD, Purdue University, May 2018. Analysis and Automated Dis-
covery of Attacks in Transport Protocols. Major Professors: Cristina Nita-Rotaru
and Sonia Fahmy.

Transport protocols like TCP and QUIC are a crucial component of today’s In-

ternet, underlying services as diverse as email, file transfer, web browsing, video

conferencing, and instant messaging as well as infrastructure protocols like BGP and

secure network protocols like TLS. Transport protocols provide a variety of important

guarantees like reliability, in-order delivery, and congestion control to applications.

As a result, the design and implementation of transport protocols is complex, with

many components, special cases, interacting features, and efficiency considerations,

leading to a high probability of bugs. Unfortunately, today the testing of transport

protocols is mainly a manual, ad-hoc process. This lack of systematic testing has

resulted in a steady stream of attacks compromising the availability, performance, or

security of transport protocols, as seen in the literature.

Given the importance of these protocols, we believe that there is a need for the

development of automated systems to identify complex attacks in implementations

of these protocols and for a better understanding of the types of attacks that will be

faced by next generation transport protocols. In this dissertation, we focus on im-

proving this situation, and the security of transport protocols, in three ways. First,

we develop a system to automatically search for attacks that target the availability

or performance of protocol connections on real transport protocol implementations.

Second, we implement a model-based system to search for attacks against implementa-

tions of TCP congestion control. Finally, we examine QUIC, Google’s next generation

encrypted transport protocol, and identify attacks on availability and performance.
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1 INTRODUCTION

Transport protocols are an essential component of today’s Internet, providing end-to-

end delivery of data between applications and implementing guarantees like reliability,

in-order delivery, and congestion control. They provide this service not only for

end applications but also for other elements of the network infrastructure like BGP.

Many of our secure network protocols, like TLS, rely on the guarantees provided

by transport protocols, while other transport protocols, like QUIC, provide security

guarantees directly.

The essential function of transport protocols is to provide end-to-end delivery of

data; however, they also usually provide a variety of guarantees to ease development

of applications and protect the network. These include reliable delivery via retrans-

missions, flow control, in-order delivery, and congestion control. As a result, the de-

sign and implementation of transport protocols is complex, with many components,

special cases, error conditions, and interacting features. Further, transport protocol

implementations often sacrifice simplicity and ease of understanding for improved

performance. Hence, implementations are usually written in low level languages like

C and make use of error-prone, but highly efficient, constructs, like pointer manipu-

lation and type casting. This leads to a high probability of bugs.

Although there are few transport protocols in common use, there are many dif-

ferent implementations and variants of these transport protocols because of their

ubiquitous role in network communication. For example, the nmap security scanner is

able to detect 5,336 distinct TCP/IP network stack configurations in its most recent

version [1]. This includes printers, VoIP phones, routers, and embedded systems,

along with general purpose operating systems.

Despite the importance of these protocols and the complexity and number of their

implementations, the testing of transport protocol implementations has been mainly



2

a manual and ad-hoc process [2–4]. This lack of systematic testing for transport

protocols and their implementations has resulted in a stream of attacks [2, 3, 5, 6].

Consider TCP, one of the most well studied and well tested network protocols; the list

of discovered attacks extends from the mid-1980’s to the present day [7–13]. Many

of these attacks have been discovered repeatedly or rediscovered again in slightly

different contexts.

Prior work has focused on easing the development of manual tests [2, 14] or on

enabling deeper testing for implementation crashes by using stateful fuzzing tech-

niques [15–17]. Another line of work has sought to apply model checking techniques

to implementations by leveraging techniques like symbolic execution [5, 18] and dy-

namic interface reduction [19] in combination with concrete attack execution. These

works, however, require source code in particular languages and struggle to handle

certainly frequently used low-level constructs like type casting, pointer casting, and

function pointers. Some require source code annotation.

1.1 Focus and Motivation

We argue that there is a need for the development of automated systems to iden-

tify complex attacks in unmodified implementations of transport protocols and for

a better understanding of the types of attacks that will be faced by next genera-

tion transport protocols. In this dissertation, we focus on improving this situation

in three ways. First, we develop a system to automatically search for attacks that

target the availability or performance of protocol connections on real transport pro-

tocol implementations. Second, we implement a model-based system to search for

attacks against implementations of TCP congestion control. Finally, we examine

QUIC, Google’s next generation encrypted transport protocol, and identify attacks

on its availability and performance.

Finding attacks against transport protocol connections. At the core of

a transport protocol’s utility is its ability to open a connection between two hosts
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and exchange the desired data in a reasonable amount of time. Hence, we begin by

focusing broadly on attacks targeting the availability or performance of a transport

protocol and particularly the ability to establish or maintain a connection with the

target implementation. For example, it is possible to blindly inject TCP reset packets

and successfully terminate a target TCP connection by using a series of widely spaced

acknowledgement numbers. This is known as the TCP Reset attack [13].

Unlike simple implementation crashes, attacks on performance or availability can

be complicated to detect. Attacks may cause a degradation in performance, an im-

provement in performance at the expense of competing flows, the connection to stall

completely, or even an incomplete close of the connection that fails to release all

resources, eventually leading to resource exhaustion. We focus on being able to auto-

matically discover attacks without modifying the transport protocol implementation

under test. Additionally, we model malicious activity by modifying or injecting pack-

ets into the network. Thus, we need some algorithm to generate test cases and inject

them into each test.

To completely automate testing, we also need to automatically create a description

of the protocol’s grammar (i.e., its packet fields and the properties of and relations be-

tween these fields). Since transport protocols are extensively documented in natural

language specification documents, typically RFCs, we believe that Natural Language

Processing (NLP) holds significant promise for automatically extracting this infor-

mation. Unfortunately, most NLP methods are sensitive to the data used at training

time and do not adapt easily if applied on data from a different domain. Applying

“off-the-shelf” implementations of NLP tools, typically trained on newswire data, or

combining them in an ad-hoc way, often results in reduced performance and brittle

applications.

We investigate these challenges and identify attack detection techniques based on

expected competition and fairness. We also identify a key search space reduction tech-

nique that leverages the protocol’s connection-level state machine, and then design

and implement SNAKE to demonstrate the effectiveness of this approach. Finally,
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we create a custom NLP document processing pipeline to automatically extract a

transport protocol’s grammar from the protocol’s specification based on a lightweight

zero-shot learning [20] framework.

Finding attacks against TCP congestion control. Congestion control is an

essential component of TCP, the transport protocol that underlies the vast major-

ity of Internet services today. Congestion control serves to protect the network from

complete congestion collapse, and associated catastrophic throughput drops, and pro-

vides fairness between competing applications. This makes it is a prime target for

attackers looking to impact the throughput of a flow.

Congestion control attacks can have severe implications for Internet services, in-

cluding financial loss. Consider an attacker who wishes to degrade video quality and

streaming experience for a subset of Netflix users. While Netflix recently began to

encrypt all of its video traffic with TLS [21], TLS relies on TCP to transfer data

across the network. As a result, an attacker can simply launch an attack misleading

TCP into believing that the network is congested. This will cause TCP to repeatedly

slow down its sending rate, causing rebuffering events and reduced video quality for

any Netflix user subjected to this attack. Due to poor streaming experience, the users

may consider turning to other video providers.

Unfortunately, techniques focusing broadly on transport protocol performance,

like our work in SNAKE, are unable to effectively find attacks on congestion control

due to its complex and highly dynamic nature. While a typical attack found by

SNAKE might consist of one malicious action, attacks against congestion control

typically require a a potentially long sequence of malicious actions spanning several

states and transitions, where each action might trigger a new state, which in turn

might require a different attack action. Attempting to use SNAKE to find these

types of attacks in TCP would require the generation of 1.2× 1024 test cases, which

is impractical for testing in real networks. This search space explosion resulting from

the dynamic and iterative nature of congestion control attacks is the key challenge

to any automated attack finding system. Additionally, there are a huge variety of
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variations and optimizations to congestion control that TCP implementations may

include.

We investigate these challenges and develop a state machine model of TCP con-

gestion control. Using this model, we develop a model-based attack search strategy,

and then design and implement TCPwn to demonstrate its effectiveness.

Attacks on next-generation, encrypted transport protocols. Google has

recently developed QUIC, a next generation transport protocol that provides encryp-

tion of all data and most headers as well as the ability to perform 0-RTT connections

and dramatically improved acknowledgement information. Further, this protocol is

widely deployed in the Internet via Google’s Chrome browser, with Google reporting

that 85% of all requests from Chrome to Google properties use QUIC, totaling about

7% of Internet traffic [22]. Additionally, there is a very active IETF standardization

effort ongoing [23].

Existing work studying QUIC has examined the security guarantees it provides [24,

25] or considered its performance in benign environments [26–30]. Instead, we focus

on the performance and availability attacks that an adversary could launch against

QUIC since QUIC presents a distinctly different attack surface compared to tradi-

tional transport protocols. Thanks to most of the protocol headers being encrypted,

attacks on congestion control and connection tear down, which can be used against

traditional transport protocols like TCP, are ineffective against QUIC. However,

QUIC also introduces 0-RTT connection establishment, which makes heavy use of

caching, thereby exposing a host of new information to the attacker.

We manually investigate QUIC and its implementation in Chrome and discover

three classes of attacks against its availability, resulting from design choices made

to allow enhanced performance. We demonstrate five attacks against QUIC that

completely prevent connection establishment.
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1.2 Dissertation Contributions

In this dissertation, we improve the state of transport protocol implementation se-

curity by developing methods for automatic attack discovery in real implementations

and examining attacks against next generation transport protocols. We summarize

our key contributions as follows:

• Attack discovery for transport protocol connections. We present a sys-

tem, SNAKE, to automatically identify attacks on transport protocol connec-

tion availability and performance in unmodified implementations. We develop

a method for identifying attacks on performance based on expected competi-

tion and fairness and a novel attack injection technique based on leveraging the

protocol’s connection-level state machine. We demonstrate the practicality of

this approach on five implementations of two transport protocols in four differ-

ent operating systems, finding 9 attacks, 5 of which were previously unknown.

We then develop an NLP document processing pipeline to extract a transport

protocol’s grammar from its natural language protocol specification document

by leveraging the structure and linguistic regularities of the protocol specifica-

tion document and a zero-shot learning framework which adapts to the specific

properties of our domain. This approach allows us to adapt to new protocols

easily and effectively. We find this pipeline capable of extracting protocol packet

fields with an F-score of 0.74 and finding and linking properties with a success

rate of 66%. We further demonstrate that this pipeline enables a reduction in

testing effort (from 901 to 819 test cases) over a manually created grammar for

TCP, while identifying the same set of attacks.

• Attack discovery for congestion control. We model congestion control as

a finite state machine and develop a model-based attack strategy generation al-

gorithm that generates possible congestion control attacks by identifying their

key characteristics. This algorithm first generates abstract attack strategies

from state machine cycles with desirable transitions. These are then converted
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into concrete attack strategies by identifying attacker actions that cause the

desired state machine transitions. To apply these attack strategies, we develop

an algorithm to infer the current congestion control state of a sender by mon-

itoring network packets. We demonstrate the practicality of this approach for

finding attacks on real implementations of TCP by creating TCPwn. We test

5 TCP implementations from 4 Linux distributions and Windows 8.1 and find

11 classes of attacks, 8 of which were previously unknown.

• Performance and availability attacks on QUIC. We investigate perfor-

mance and availability attacks against QUIC, Google’s new encrypted,

performance-optimized transport protocol. Due to the encryption of most pro-

tocol headers and the heavy reliance on caching for 0-RTT, QUIC has a very

different attack surface than traditional transport protocols like TCP. We dis-

cover three classes of availability attacks based on design choices made to opti-

mize performance. We identify and demonstrate 5 attacks against QUIC that

completely prevent connection establishment.

1.3 Software Released

We have released both the SNAKE and TCPwn automated testing systems de-

veloped over the course of this work under the open-source BSD license. SNAKE can

be found at https://github.com/samueljero/snake while TCPwn is available at

https://github.com/samueljero/TCPwn.

1.4 Dissertation Roadmap

The rest of the dissertation is organized as follows. We provide additional back-

ground on transport protocols in Chapter 2 and discuss the attacker and attack mod-

els we consider in the rest of this work in Chapter 3. Chapter 4 presents SNAKE,

our system for automatically finding attacks against transport protocol connections.

https://github.com/samueljero/snake
https://github.com/samueljero/TCPwn
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Chapter 5 presents TCPwn, our system for automatically finding attacks on TCP

congestion control. Our investigation of performance and availability attacks against

QUIC is presented in Chapter 6. We then discuss related work in Chapter 7 and

conclude this dissertation in Chapter 8.
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2 TRANSPORT PROTOCOLS

Transport protocols provide end-to-end communication between two applications run-

ning on different hosts. They enable multiple applications to use the same host by

introducing the concept of a port and provide protection from data corruption using a

checksum. Most transport protocols, with the exception of UDP [31] which provides

only unreliable data delivery, provide additional services such as: (1) reliability, (2)

ordered delivery, (3) flow control, and (4) congestion control. Providing these services

requires the end-hosts to maintain state, which usually requires a connection-oriented

protocol. In this work we focus solely on connection-oriented transport protocols due

to the fact that they are used for the majority of Internet services and make up

the majority of Internet traffic. These protocols consist of three phases: connection

establishment, data transfer, and connection tear-down.

Connection establishment. Connection establishment, typically in the form of

a handshake, takes place before any data is exchanged between end-hosts and serves

to synchronize the state of both parties. During this phase, both hosts exchange

sequence numbers, set sequence windows, and allocate buffers.

Data transfer. Once a connection is established, data flows between the two

parties. During this phase, the transport protocol may provide a number of additional

services.

Reliability is a common service that usually implemented using acknowledgments

and retransmissions. The sender uses a buffer to store data that has been sent and

includes a sequence number on each packet. Periodically, the receiver sends an ac-

knowledgment to the sender. When the sender receives this acknowledgment, it de-

termines what data has been lost and retransmits this data. Data acknowledged as

received correctly is also removed from the sender’s buffer. Since there is the possi-

bility of acknowledgments being dropped by the network, the sender includes a timer
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to retransmit data if no acknowledgment of sent data has been received after some

lengthy time interval.

Ordered delivery is another commonly provided service that guarantees that data

sent by one application is received at the other in the same order that it was sent. This

is related to reliability and the two are usually implemented together. Implementing

ordered delivery also requires a packet sequence number, allowing the receiver to

determine the sending order. Packets received out of order are buffered at the receiver

until the missing packets are received. The packets can then be delivered to the

application in order.

Flow control ensures that a sender does not overwhelm a slow receiver with more

data than it can buffer. The goal is for the sender to send at the same rate that the

receiver is receiving. Flow control is specified as a sliding window indicating the data

that the receiver can currently buffer. The sender is then limited to sending that

window of data before receiving an acknowledgment indicating that the window has

either slid forward or increased in size.

Congestion control is another common service which serves both to protect against

congestion collapse in the network and to provide fairness between competing flows.

Congestion collapse occurs when severe network congestion, or over-utilization, results

in the network spending the majority of its time sending data that will eventually

be dropped. This results in a persistent drop in throughput. Fairness ensures that

if two flows are competing over the bandwidth on a bottleneck link, they share that

bandwidth roughly equally. The networking community has generally understood this

to mean that the flows achieve throughput within a factor of two of each other [32,33].

Some transport protocols, like QUIC, may provide security guarantees like confi-

dentiality and authentication for exchanged data.

Connection tear down. After all data has been transferred, the end-hosts

need a way to signal this and agree to release all state about the connection. Like

connection establishment, connection tear down takes place through a handshake in
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Figure 2.1.: TCP header fields. Each tick represents a bit position [34]

which the two hosts indicate that they are done sending data and are ready to close

the connection.

In the following sections we describe in detail the three transport protocols that

we will focus on in this work: TCP, DCCP, and QUIC.

2.1 TCP

TCP [34] is the most common transport protocol in use today, underlying the vast

majority of Internet traffic, including web, email, instant messaging, and file transfer

applications. It provides a reliable byte-stream between end hosts and implements

reliability, in-order delivery, and flow control in order to achieve this. It also provides

congestion control and attempts to ensure fairness.

A TCP connection is started by a handshake between two end-hosts [34]. This

allows both end-hosts to inform each other of their initial sequence numbers and any

important options. A similar handshake is performed at the end of the connection to

make sure that all data has been delivered before the connection terminates. The full

connection state machine is shown in Figure 2.2. Reliability is achieved by having

the sender assign a sequence number to each byte of data and having the receiver

acknowledge the highest consecutive byte of data it has received [34]. Retransmissions
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Figure 2.2.: TCP Connection-level State Machine

are triggered either by a retransmission timeout (RTO) or by receiving three duplicate

acknowledgments, indicating the reception of packets above some missing bytes [35].

All TCP packets contain a single, common header. (shown in Figure 2.1). This

header contains source and destination ports, a sequence number, an acknowledgment

number, a set of control bits, a checksum, and options. TCP uses the set of control

bits, or flags, in its header to indicate certain types of packets. The packets in the

initial handshake are marked with the SYN flag; those in the final handshake with the

FIN flag. Reset packets use the RST flag to abruptly terminate a connection after an

error. An ACK flag indicates a valid acknowledgment field and is set on every packet

after the initial SYN.

In most TCP connections, only one side of the connection is sending data at any

given time. In order to provide feedback to the sender, TCP requires that receivers

that are quiescent, that is, not currently sending data themselves, must periodically

send an empty TCP packet to supply the sender with a current acknowledgement.
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These empty TCP packets are simply TCP packets with no data and are usually

called pure acknowledgements, or simply acknowledgements.

2.1.1 TCP Congestion Control

TCP provides congestion control to protect the network from congestion collapse

and provide fairness between competing flows. We first describe classic TCP New

Reno [35,36], and then briefly discuss then discuss optional improvements and variants

like SACK [37], DSACK [38], TLP [39], PRR [40], FRTO [41], and others [42,43].

At a high level, the congestion control of TCP New Reno consists of four phases:

(1) slow start, (2) congestion avoidance, (3) fast recovery, and (4) exponential backoff.

During the slow start phase the sender is probing the network to quickly find the

available bandwidth without overloading the network; once such bandwidth is found,

the sender enters a congestion avoidance phase in which the sender can send without

causing congestion; in case of congestion and data loss, fast recovery or exponential

backoff reduce the rate at which data is sent. The fast recovery phase is intended

for less significant events where the beginning of congestion is detected through lost

packets and acknowledgments, while the exponential backoff phase deals with more

significant events where congestion is detected by the expiration of a large timeout.

We present the finite state machine (FSM) model assumed for congestion control in

Figure 2.3. Below we describe the associated events, variables, and states.
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(1) Events. TCP congestion control relies on two events for its operation, the re-

ception of an acknowledgement (ACK) and the occurrence of a timeout (RTO Time-

out):

ACK. This event denotes that an acknowledgement packet was received by the

sender. TCP acknowledgements are byte-based and cumulative, i.e. the receiver

acknowledges the highest byte of data at which all prior data has been received. A

duplicate acknowledgment, and particularly three duplicate acknowledgments, are

used to signal timely information about the network conditions.

RTO Timeout. This event denotes that a timeout occurred when data was

outstanding and no acknowledgements were received for several Round-Trip-Times

(RTTs). This indicates more severe conditions in the network since the last acknowl-

edgement. This timer is started when new data packets are sent, reset on every

acknowledgement, and stopped if all data has been acknowledged.

(2) Variables. The variables capturing the main functionality of congestion control

can be grouped into three categorizes: variables related to the amount of data to be

sent (cwnd and ssthresh), variables keeping track of acknowledged data (dupACKctr

and high water), and variables controlling timeouts (rto timeout).

Congestion window – cwnd. This variable represents the number of bytes of

data that TCP is allowed to have in the network at any given time. It is modified

by TCP congestion control to increase or decrease the sending rate in response to

network conditions.

Slow start threshold – ssthresh. This variable indicates the value of the con-

gestion window cwnd at which TCP switches from slow start to congestion avoidance.

TCP uses this information later in the connection by growing the window exponen-

tially up to ssthresh after a timeout or idle period.

Duplicate ACK – dupACKctr. This variable tracks the number of duplicate

acknowledgements received in slow start and congestion avoidance. Receiving three

duplicate acknowledgements triggers a transition to fast recovery.
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Highest sequence sent – high water. This variable records the highest se-

quence number sent prior to entering fast recovery. Only once this sequence number

has been acknowledged (or a timeout occurred) will fast recovery be exited.

RTO Timeout – rto timeout. This variable indicates the current length of the

RTO Timeout. It is usually set to max(200ms, 2 ∗RTT + 4 ∗RTT V ariance). If the

RTO timer expires, this value is doubled, resulting in an exponential backoff.

(3) States. We can now describe the state machine from Figure 2.3. The states

capture the four high-level phases described before.

Slow Start. In this state TCP rapidly increases its sending rate, as indicated by

the congestion window cwnd, in order to quickly utilize the available bandwidth of the

path while not overloading the network with a huge initial burst of packets. For each

acknowledgement acknowledging new data, cwnd is incremented by MSS (Maximum

Segment Size), which results in a doubling of the sending rate every RTT. TCP

exits slow start on the RTO Timeout, after three duplicate acknowledgements—which

indicate a lost packet—, or when the congestion window cwnd becomes bigger than the

slow start threshold ssthresh. This last condition indicates that TCP is approaching

a prior estimate of the fair-share connection bandwidth. TCP connections start in

the slow start state with ssthresh set to MAX INT, such that slow start is only

exited on timeout or packet loss, and cwnd set to 10, allowing a burst of ten packets

to be sent initially.1

Congestion Avoidance. In this state TCP is sending close to its estimate of the

available bandwidth while also slowly probing for additional bandwidth. Every RTT

cwnd is increased by one MSS sized packet. In practice, this is done by increasing cwnd

by a small amount((MSS ∗ cwnd)/MSS) for every new ACK received. TCP exits

congestion avoidance either on an RTO Timeout or after receiving three duplicate

acknowledgments, indicating a lost packet.

Fast Recovery. In this state, TCP is recovering from a lost packet indicated

by three duplicate acknowledgements. TCP assumes that packet loss signals network

1This initial window was originally 2-4 packets [35], but has been increased to 10 packets in more
recent standards [44] and implementations.
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congestion, so it cuts its sending rate in half by halving cwnd, and retransmits the

last unacknowledged packet. ssthresh is set to this new value of cwnd, providing an

approximate bandwidth estimate in case of a timeout. TCP remains in fast recovery

until all data outstanding at the time it entered fast recovery has been acknowl-

edged or an RTO timeout occurs. This is achieved by saving the last packet sent in

high water upon entry and exiting once this packet has been acknowledged.

In fast recovery, acknowledgement handling is optimized to recover from the loss,

avoid expensive RTO timeouts, and return to congestion avoidance as quickly as

possible. As a result, duplicate acknowledgements received in fast recovery cause cwnd

to be increased by one MSS, under the assumption that a duplicate acknowledgement

means that a packet was received. This enables TCP to more accurately keep cwnd

bytes of data in the network, which in turn reduces the likelihood of an RTO timeout.

Additionally, an acknowledgement that acknowledges new data but not high water

immediately causes retransmission of the last unacked packet, under the assumption

that this packet, too, was lost. Once high water is acknowledged, TCP resets cwnd

to ssthresh, undoing the increases resulting from duplicate acknowledgements, and

transitions to congestion avoidance.

Exponential Backoff. In this state, TCP is retransmitting a lost packet each

time the RTO timer expires. With each timer expiration, rto timeout is doubled,

resulting in an exponential backoff between retransmissions. This state is entered from

any other state when the RTO timer expires, indicating that data is outstanding in

the network but no acknowledgements have been received in rto timeout seconds

(at least 2 RTTs). This situation indicates the loss of a large number of packets and,

likely, significant changes in network conditions. As a result, ssthresh is set to half of

cwnd, cwnd is set to 1 MSS, and the last unacknowledged packet is retransmitted. TCP

remains in this state, retransmitting this packet each time the RTO timer expires,

until an acknowledgement is received, at which point it transitions to slow start.

Variations and Optimizations. The classic TCP New Reno congestion control

algorithm we described above has seen a number of variations and optimizations over
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Figure 2.4.: DCCP generic header fields. Each tick represents a bit position [45]

the years. These include SACK [37], DSACK [38], TLP [39], PRR [40], CUBIC [42],

and RACK [43]. These variations and optimizations consist of fairly minor changes

to the basic New Reno algorithm. SACK [37], for example, provides the sender with

additional information about received packets and uses this information to determine

when to enter fast recovery. The logic of the decision does not change: fast recovery

is entered when three packets above a loss have been received. SACK simply uses

a more accurate method to detect this condition. Similarly, PRR [40] modifies New

Reno by adopting paced packet sending during the self-loop in fast recovery. TLP [39]

introduces a new, faster timeout state before exponential backoff. CUBIC TCP [42]

changes precisely how cwnd is increased in congestion avoidance and decreased during

fast recovery. While these changes affect the performance of TCP in certain network

conditions, they follow the same phases of TCP congestion control as New Reno.

2.2 DCCP

The Datagram Congestion Control Protocol (DCCP) [45] was designed for ap-

plications that wanted congestion control, but did not want the retransmissions and

head-of-line-blocking associated with TCP. Examples of such applications are appli-

cations that are highly latency sensitive, such as VoIP, realtime streaming video, and

video gaming.

Like TCP, DCCP requires a handshake to setup a connection and another one

to tear the connection down. The connection state machine is shown in Figure 2.5.
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Figure 2.5.: DCCP Connection-level State Machine

However, unlike TCP, DCCP uses different types of packets for these handshakes [45].

Hence, the initial handshake consists of a REQUEST and a RESPONSE packet while the

final handshake consists of a CLOSE and a RESET packet. The first several fields of all

packet types are fixed and are shown in Figure 2.4 while later fields vary according

to packet type.

DCCP assigns sequence numbers to packets instead of bytes. Further, every packet

increments the sequence number; even pure acknowledgments carrying no data [45].

The receiver acknowledges the highest sequence number received; since DCCP does

not retransmit data, a TCP-like cumulative acknowledgment does not make sense.

However, this design means that DCCP endpoints can get out of sync after extended

bursts of loss and reject valid packets as not within the current sequence window.

To mitigate this issue, a third handshake—of SYNC and SYNCACK packets—is used

to exchange the current sequence numbers of both parties and resynchronize the

connection [45].

DCCP also features pluggable congestion control modules, known as CCIDs.

Two are currently standardized: CCID 2 [46], TCP-like Congestion Control, and

CCID 3 [47], TCP-Friendly Rate Control (TRFC). We focus on CCID 2 in this work.
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(a) HTTPS over TCP (b) HTTPS over QUIC

Figure 2.6.: HTTPS stack over a) TCP and b) QUIC

It follows TCP’s New Reno with SACK congestion control algorithm as closely as pos-

sible, although there are several minor changes due to DCCP’s packet-based sequence

numbers [46].

2.3 QUIC

Quick UDP Internet Connections, or QUIC, is a new transport protocol that

was developed by Google, implemented in Chrome in 2013 [48], and now provides

service for the majority of requests by Chrome to Google services [22]. QUIC’s

goal is to provide secure communication comparable to TLS [49] while achieving

minimal connection setup latency. In particular, QUIC provides 0-RTT connections,

enabling useful data to be sent in the first round trip. In contrast, the equivalent

connection using TCP+TLS would require two or three RTT’s, depending on whether

TLS session resumption [50] was in use. This results in significant and noticeable

latency savings that are of significant interest to today’s online services and businesses.

To achieve this, QUIC provides much of the functionality provided by TCP and TLS

in a single protocol and runs on top of UDP, as shown in Figure 2.6. Combining

this functionality in a single protocol enables optimizations like 0-RTT connections.
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Figure 2.7.: QUIC public header fields. Each tick represents a byte [52]

QUIC also provides encryption of most transport protocol headers, to protect against

manipulation attacks, and significantly improved acknowledgement information.

In this work, we focus on QUIC as specified and implemented by Google [51–53].2

Note that QUIC is currently under active standardization by the IETF [23], and while

IETF-QUIC has the same design goals and significant similarity to Google’s original

QUIC, there are a number of technical differences, including a big-endian packet

format and the use of TLS 1.3 [54] instead of a custom cryptographic handshake [51,

53,55]. The rest of our discussion focuses on Google’s original QUIC.

QUIC packets contain a small public header and then a set of frames that are

encrypted and authenticated after initial connection setup. The initial public header

(shown in Figure 2.7) contains a set of public flags, a unique 64bit identifier for

a connection referred to as a connection id or cid, a variable length packet num-

ber, and optionally a 32bit QUIC version number or a diversification nonce. All

2Specifically, QUIC version Q021, from October 2014.
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Figure 2.8.: QUIC Connection-level State Machine

other protocol information is carried in control and stream (data) frames that are

encrypted and authenticated. Once the connection is setup, QUIC provides multiple

byte-streams per connection, to reduce head-of-line-blocking. Reliability is enabled

with per-packet sequence numbers and encrypted acknowledgements providing up to

256 SACK blocks [52]. QUIC packet numbers always start at one and are never

retransmitted. Instead, missing frames are packaged into a new packet and resent.

This separation of packet and byte-stream sequence numbers eliminates retransmis-

sion ambiguity. QUIC currently uses the same congestion control algorithms as TCP

and combines them with packet pacing to help avoid burst loss [22, 52].

To provide 0-RTT connection establishment, QUIC provides a custom crypto-

graphic handshake [53]. This handshake protocol operates as an exchange of messages

over a reserved QUIC byte-steam. The basic idea is to cache important information

about the server that will enable the client to determine the encryption key to be used
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for each new connection. The client can then encrypt application data without hear-

ing from the server, providing 0-RTT connection establishment. The full connection

state machine for QUIC is shown in Figure 2.8.

The first time a client contacts a given server it has no cached information, so it

sends an empty c hello message. The server responds with an s reject message

containing the server’s certificate and three pieces of information for the client to

cache. The first of these is an object called an scfg, or server config. The scfg

contains a variety of information about the server, including a Diffie Hellman share

from the server, supported encryption and signing algorithms, and flow control pa-

rameters. This scfg has a defined lifetime and is signed by the server’s private key to

enable authentication using the server’s certificate. Along with the scfg, the server

sends the client a Source Address Token or stk and possibly a Server Nonce or sno.

The stk is used to prevent IP spoofing while the sno is used to prevent replay of

messages without requiring time synchronization for clients. The stk contains an

encrypted version of the client’s IP address and a timestamp while the sno contains

an encrypted timestamp and random value.

With this cached information, a client is able to establish an encrypted connection

with the server. It first ensures that the scfg is correctly signed and that the server’s

certificate is valid and then sends a c hello indicating the scfg its using, any stk

and sno values it has cached, a Diffie Hellman share for the client, and a client nonce.

After sending the c hello message the client can create an initial encryption key

and send additional encrypted data packets. In fact, to take advantage of the 0-

RTT connection establishment it must do so. When the server receives the c hello

message, it validates the stk, sno, and client nonce parameters and creates the same

encryption key using the Diffie Hellman share corresponding to the scfg and the

client’s share from the c hello message.

At this point, both client and server have established the connection and setup

encryption keys, and all further communication between the parties is encrypted.

However, the connection is not forward secure yet, meaning that compromising the
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server would compromise all previous communication. This is because the server’s

Diffie Hellman share is the same for all connections using the same scfg. To provide

forward secrecy, the server sends an s hello message containing a newly generated

Diffie Hellman share after receiving the client’s c hello message. Once the client

receives this message, client and server derive and begin using a new forward secure

encryption key, providing forward secrecy for all data sent after the first RTT.

The security of QUIC, and particularly its new cryptographic handshake, have

received significant attention in prior work [24, 25, 56]. [24] focuses on proving the

security of QUIC’s handshake while [56] provides a formal proof of the security for

the protocol as a whole. In particular, the authors show that the protocol preserves

the integrity and authenticity of data against an attacker who can initiate protocol

connections, observe and modify target connections, and corrupt servers. Addition-

ally, these proofs show that QUIC protects the server from spoofed connections. They

note, however, that data sent under the initial encryption key (i.e., 0-RTT data) is

not forward secret and can be recovered if an attacker compromises the server while

the scfg is still valid. Additional work [57] has pointed out that it is also possible to

replay 0-RTT data to other servers. As a result, it is crucial that data transmitted in

the first RTT be idempotent. QUIC prevents 0-RTT data from being replayed later

in the same connection and even across connections to the same server. However,

it does not protect the same request from being replayed to additional servers that

implement the same application (i.e., other servers in a server farm). The work in [25]

demonstrates the importance of cross-protocol interactions by pointing out that ex-

posing the same certificate over TLS 1.2 or below and QUIC enables an attacker to

mount a Bleichenbacher-attack [58] to forge the signature on a fake scfg. This could

potentially be used to launch a man-in-the-middle attack on QUIC. Such attacks can

be prevented by using different certificates for QUIC and TLS 1.2 (or below) servers

running on the same domain.
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3 ATTACKER AND ATTACK MODEL

In this section we discuss the attacker capabilities and goals we consider in this work

and differentiate between major classes of possible attacks.

3.1 Attacker Capabilities

A malicious attacker targeting a transport protocol may have a variety of different

capabilities for attacking the protocol. We can categorize these attacker capabilities

based on the attacker’s location in the network relative to the target connection or

link: blind, off-path, on-path, or endpoint. We discuss each of these in turn and

summarize them in Figure 3.1.

Blind Attackers. The blind attacker knows that some target connection or link

exists and seeks to attack it without being able to see any of the target traffic. Such

an attacker can inject spoofed packets into the network, but has no knowledge of

detailed protocol state. Thus, the attacker has to guess this protocol state or rely on

attacks that do not require it.

Off-path Attackers. An off-path attacker has the ability to both inject spoofed

packets and observe packets in the target connection or link. This ability is usually

obtained by sniffing traffic on the client’s local network. By observing the target

connection the attacker can gather detailed protocol state for use in injected packets

and even race messages from the server.

On-path Attackers. An on-path attacker can modify and control delivery of

legitimate packets in some target connection or link as well as inject new spoofed

packets. Such an attacker is usually a switch on the path between client and server.

Tampering with and injecting packets can be prevented using encryption and au-
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(a) Blind Attacker (b) Off-path Attacker

(c) On-path Attacker (d) Endpoint Attacker

Figure 3.1.: Attacker Types

thentication of the protocol packets. However, that does not stop this attacker from

controlling the delivery of legitimate packets.

Endpoint Attackers. An endpoint attacker is a malicious host who seeks to

subvert the protocol. Such an attacker can modify and control delivery of packets

arbitrarily as well as send additional packets. Encryption and authentication provide

no protection here because the client has the keys needed to encrypt arbitrary packets.

For unencrypted protocols, endpoint and on-path attackers are equivalent.

In this work, we consider attackers in all categories.

3.2 Attack Goals

In this work we focus on attacks that target the availability or performance of a

transport protocol. We discuss these goals more below:

Compromise Availability (Denial of Service). Attacks that target availabil-

ity seek to make a particular network service offered over some transport protocol

unavailable to its users. This may either deny access to a victim host globally or
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be focused only on a particular target connection. These attacks are often referred

to as denial of service attacks; however, there are a variety of ways an attacker may

go about achieving this goal beyond merely sending more traffic than the victim can

process.

Attacks that seek to deny access to the victim globally are likely to focus on over-

loading or crashing the victim. This can be done by simply overwhelming the victim

with traffic or by exploiting a bug in the victim’s transport protocol implementation

to crash the victim. The attacker may also attempt to manipulate the protocol to

cause it to improperly release resources, causing a resource exhaustion attack.

Attacks that target a particular connection are much more focused and precise.

The attacker is free to target either end of the connection and can monitor and seek

to disrupt the target connection with forged replies or other invalid responses. This

would typically cause the target connection to stall or be aborted.

Compromise Performance. Attacks that target performance seek to manipu-

late the transport protocol to compromise fairness with competing flows. This may

be either to increase or decrease the throughput of some target flow. Decreasing the

throughput of a target flow can have significant impact at the application level, es-

pecially for non-elastic data streams like real-time streaming video, while increasing

throughput enables an attacker to artificially increase the share of some target connec-

tion beyond what would be considered fair and may be used to increase the damage

done by a denial of service attack. Attacks seeking to compromise performance are

likely to focus on the protocol’s congestion control algorithm.

Attacks that manipulate data or impersonate hosts are not considered in this

work. Additionally, while we may identify crashes that compromise availability, we

consider further analysis of the exploitability of those crashes as out of scope.
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3.3 Attack Characteristics

We differentiate transport protocol attacks based on a couple of key characteristics.

Protocol Specific vs Generic. Attacks on transport protocols can be either

generic, applying to all transport protocols, or specific to a particular transport pro-

tocol. Dropping all packets in a connection is an example of a generic attack that

prevents any transport protocol from establishing a connection. While these attacks

are effective, they are also fairly course grained and expected for any network proto-

col. In contrast, protocol specific attacks rely on specific modifications to a particular

protocol, induce much more subtle and unexpected failures, and are harder to find.

In this work we focus on protocol specific attacks.

Stateful vs Stateless. Attacks on transport protocols can be either stateful,

requiring the attacker to maintain state about the protocol connection, or stateless.

Stateful attacks are much harder to execute since they require maintenance and usage

of the right state information at the right time; however, they are also usually much

harder to identify due to the much larger possible attack space. While we consider

both stateless and stateful attacks in this work, we are particularly interested in

stateful attacks.
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4 AUTOMATED ATTACK DISCOVERY FOR TRANSPORT PROTOCOL

CONNECTIONS

Even manually identifying attacks on the performance or availability of transport

protocols is a complex task. Attempting to automate this process posses a number of

challenges, especially around detecting attacks, search space exploration, and protocol

information extraction. In this chapter, we investigate how to automatically identify

a broad variety of attacks on transport protocol availability and performance without

modifying or making assumptions about the protocol implementation.

4.1 Introduction

Transport protocols provide end-to-end communication in a layered network ar-

chitecture by implementing guarantees such as reliability, in-order delivery, and con-

gestion control. They are used not only directly by applications, but also by Internet

services such as BGP and secure protocols such as TLS.

Providing these guarantees causes the design and implementation of transport

protocols to be complex, with many components, special cases, error conditions,

and interacting features. Further, many implementations are written in low level

languages like C for improved performance and make use of error-prone, but highly

efficient, constructs like pointer manipulation and type casting. Unfortunately, trans-

port protocol implementations often sacrifice simplicity and ease of understanding for

improved performance, resulting in a high probability of bugs introduced during im-

plementation.

Due to the ubiquitous role of transport protocols in network communication, there

are many different implementations of these protocols. For example, the nmap security

scanner is able to detect 5,336 distinct TCP/IP network stack configurations in its
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most recent version [1]. This includes printers, VoIP phones, routers, and embedded

systems, along with general purpose operating systems. While many of these may be

different configurations of a few common networking stacks, these variations represent

different handling of particular network conditions, which often implies the exercise

of different code paths.

Despite the importance of these protocols and the complexity and number of their

implementations, the testing of transport protocol implementations has been mainly

a manual and ad-hoc process [2–4]. This lack of systematic testing for transport

protocols and their implementations has resulted in a stream of new bugs and at-

tacks [2,3,5,6]. Consider TCP, one of the most well studied and well tested network

protocols; the list of discovered attacks extends from the mid-1980’s to the present

day [7–13]. Many of these attacks have been discovered repeatedly or rediscovered

again in slightly different contexts.

Prior work in testing network protocol implementations has focused on easing the

development of manual tests [2,14] and on enabling deeper testing for crashes by us-

ing stateful fuzzing techniques [15–17]. Other work has focused on systematic testing

by leveraging techniques like symbolic execution [5,18] and dynamic interface reduc-

tion [19] in combination with concrete attack execution. Many of these techniques

require access to the source code and require heuristics to efficiently handle low level

constructs like type casting, pointer casting, and function pointers, which are heavily

used in network protocol implementations. The major challenge faced by all of these

approaches is search space explosion.

In this chapter, we focus on automated attack finding for transport protocol im-

plementations. Specifically, we leverage information about packet formats and the

protocol’s connection-level state machine to automatically create attack scenarios

consisting of malicious actions performed on protocol packets in targeted protocol

states. Knowledge of the packet formats enables the generation of malicious packets

based on packet type while information about the protocol’s connection state machine

allows the tracking of the current state of the protocol at runtime. State tracking
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is achieved without code instrumentation by monitoring packets sent and received

while malicious packet manipulation is achieved using a network proxy. By inferring

the current state of the protocol’s connection state machine, our method can perform

malicious actions on all packets of a particular type in a particular protocol state in-

stead of on individual packets, significantly reducing the search space. The protocol’s

connection state machine also allows us to identify key points for attack injection in

the transport protocol, ensuring wide coverage.

The connection state machine and packet formats are an important part of any

protocol specification. Unfortunately, these protocol specifications are usually in-

formal documents written in natural language text, not formal specifications. We,

therefore, investigate whether we can leverage Natural Language Processing (NLP) to

automatically extract these protocol packet formats and rules (i.e., a protocol gram-

mar) from the natural language specification documents and use these automatically

extracted grammars to improve attack finding.

Given the inherent ambiguity of natural language text, extracting a protocol gram-

mar is not a straight-forward task. The writers of protocol specifications often rely on

the human reader’s understanding of context and intent, making it difficult to specify

a set of rules to extract information. This is by no means unique to the computer

networks domain, and as a result, the natural language community has shifted its

focus over the last decade to statistical methods that can help deal with this am-

biguity. Specifically, most NLP methods are sensitive to the data used at training

time and do not adapt easily if applied on data from a different domain. Applying

“off-the-shelf” implementations of NLP tools, typically trained on newswire data, or

combining them in an ad-hoc way, often results in reduced performance and brittle

applications. We, therefore, design an NLP framework to extract a network proto-

col’s grammar from its protocol specification document by exploiting the structure

and linguistic regularities of documents and leveraging zero-shot learning to enable

adapting to new protocols.
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Our testing approach works with unmodified implementations irrespective of their

operating system, programming language, or required libraries. It does not require

access to the source code, enabling the testing of a wide range of transport protocol

implementations, including proprietary, closed-source systems.

The contributions of this chapter are:

• We present a new approach to search space reduction without instrumenting

the code. This approach leverages a description of the protocol’s connection

state machine to identify critical points in the search space for attack injection

and to explore the implementation more thoroughly. We use knowledge of the

protocol’s packet formats to perform a variety of malicious actions, including

packet field manipulation, and apply these malicious actions to packet type,

protocol state pairs instead of individual packets, enabling significant state space

reduction. We also use the protocol state machine to ensure that we test all

protocol states, providing wide coverage.

• We demonstrate our approach with SNAKE, a new tool for finding attacks

on unmodified transport layer protocol implementations running in arbitrary

operating systems and in realistic networks. SNAKE (State-based Network

AttacK Explorer) uses virtualization to run unmodified transport layer imple-

mentations in their intended environments and a network emulator to tie these

virtual machines together into a realistic, emulated network. The network em-

ulator intercepts and modifies packets, tracks the current protocol state during

execution, and uses this information to create packet-based attacks at specific

points in the state machine execution. SNAKE is general for use on many trans-

port protocols, requiring only a description of the packet header formats (i.e.,

the protocol’s grammar) and the connection state machine as input.

• We use SNAKE to examine a total of 5 implementations, 2 transport protocols—

TCP [34] and DCCP [45]—, and 4 operating systems. We find 9 classes of

attacks, 5 of which are, to the best of our knowledge, unknown in the literature.
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We also compare our state-based attack search with two baseline approaches

and show its effectiveness in search space reduction.

• We define the problem of protocol grammar extraction as a set of NLP tasks.

By grammar, we mean protocol header fields and their properties, as well as

relations between these fields. We define the learning of protocol fields as an

entity recognition problem and the learning of properties and relations between

fields as a relation extraction problem.

• We design an NLP framework to solve these tasks. We minimize the manual

supervision effort required for training our NLP framework by exploiting the

structure and linguistic regularities of the protocol specification document do-

main. Unlike previous work that applied transformation rules to the output

of NLP tools directly, we propose a lightweight zero-shot learning framework

which can adapt to the specific properties of the networking domain. Specifi-

cally, we learn a similarity function between textual phrases and protocol fields

and relations. The similarity function captures the surface level string similar-

ity, acronyms used in the text to refer to the fields, and anaphoric references

(“it”,“that field”) based on their context. This approach allows us to adapt to

new protocols by providing different sets of entities. We evaluate the quality

of the zero-shot learning process by training it on one set of protocol symbols

and testing it on a different set (we use RFCs for GRE [59], IPv6 [60], IP [61],

TCP [34], UDP [31], DCCP [45], and SCTP [62]).

• We demonstrate the usefulness of the information extracted by our NLP frame-

work by applying it to SNAKE. We compare three settings: Random, Manual,

and NLP-based, where the input packets were generated without protocol se-

mantics knowledge, with manual specification, and with NLP-extracted proto-

col semantics, respectively. We find that our automatically generated protocol

grammars are as effective in identifying attacks as manually created grammars

while enabling improved efficiency.
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The rest of this chapter is organized as follows. Sections 4.2 and 4.3 present

the design and the implementation of SNAKE, respectively. Section 4.4 shows our

results, including the attacks we discovered. Section 4.5 discusses our work to further

automate SNAKE by leveraging Natural Language Processing to extract information

from protocol specification documents automatically. Finally, Section 4.6 summarizes

this chapter.

4.2 Design

In this section, we discuss the design of SNAKE. We first provide an overview of

our approach, then describe how we utilize the protocol’s connection state machine

to reduce the search space and generate attack strategies. Finally, we describe the

packet-level basic attacks we consider.

4.2.1 Overview

We focus on finding attacks by endpoint or blind attackers on unmodified im-

plementations of transport protocols. We consider availability attacks that target

connection establishment as well as resource exhaustion attacks. Additionally, we

consider performance attacks resulting in throughput degradation or the compromise

of fairness. These attacks can be identified by examining the results of an attempted

data transfer. Specifically, connection establishment attacks can be identified by ob-

serving a target connection that transfers no data. Resource exhaustion attacks result

in incomplete socket cleanup at the server. Throughput degradation attacks and at-

tacks on fairness can be identified by unfair competition between a target connection

and its competitor; throughput degradation attacks target the low throughput con-

nection while attacks on fairness target the high throughput connection. All of these

attacks can be detected by running the protocol for a relatively short period of time.

We select an environment that combines virtualization with network emulation.

Virtualization allows us to test a wide range of implementations independent of lan-
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Figure 4.1.: Design of SNAKE

guage, operating system, or access to source code. The network emulation provides

us the reproducible measurements and attack isolation needed to detect performance-

related attacks. Figure 4.1 presents our system design.

The attack strategies we consider can be created by packet manipulation and

injection based on the packet type and the individual packet fields. These strategies

are selected from a set of basic attacks derived from information about packet formats.

For instance, an attack strategy may be to duplicate packets of type W ten times, or

to inject a new packet of type X with field 3 set to Y, or to modify field 5 of packet

type Z to 555. Each of these attack strategies are performed in particular protocol

states.

To determine what kinds of basic attacks would be most useful, we performed a

detailed literature study on transport protocol attacks and identified some common

components, or building blocks, used in many of these attacks. Based on this study,

we defined a set of packet-based basic attacks that we use to compose attack strategies.

As we do not require access to the source code, our approach relies on intercepting

and modifying or injecting network traffic. We place an attack proxy between one of

our test hosts and the emulated network. This proxy emulates an on-path or endpoint

attacker and intercepts packets to apply basic attacks such as influencing the delivery

of packets or modifying the packets flowing through it. We also use the proxy to

emulate a blind attacker who injects new packets into the network.

We detect if an attack was successful or not by comparing the connection per-

formance under attack with a baseline generated from a test with no attacks and by
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Figure 4.2.: Attack Injection Algorithms

checking for open sockets on the server after the test completes. Attack strategies

that appear successful are tested a second time to ensure repeatability.

4.2.2 Attack Injection

An important aspect of determining an attack search strategy is identifying the

attack injection points, that is, the points where attacks can be inserted into a test

run.

Send-packet-based attack injection. One simple approach is to have the

proxy intercept each packet generated by the client application running in the virtual

machine, apply any basic attacks desired, and forward the packet on to its destination.

This means that an attack injection point occurs whenever there is a send for a

particular packet type, as shown in Figure 4.2(a).

While this approach is relatively simple and can find many attacks, it also results

in repeatedly performing attacks that have the same semantics for the protocol, thus
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resulting in redundant executions and lengthening the time required to complete

the search. In addition, this approach does not work well for blind attackers and

fails to find attacks not connected with packet send events in the code. This is

particularly problematic for transport protocols because many availability attacks

against connection establishment and tear down fall into this category.

Time-based attack injection. One approach to provide support for blind at-

tackers and finer time granularity is to divide the running time into fixed intervals

and, for each of these intervals, attempt to inject packets following all basic attacks,

as shown in Figure 4.2(b). While this approach is also relatively simple, a small time

interval must be used in order to catch many attacks. This will result in testing thou-

sands of strategies that either do not inject attacks or inject many redundant attacks,

based on the semantics of the protocol. As a result, this approach also has a high

execution time overhead and can take a very long time to complete. Recall that some

of our attacks are packet manipulation attacks designed to simulate endpoint attack-

ers. These attacks can only be inserted on a packet send. Nevertheless, this attack

injection strategy will attempt to insert them at very small increments throughout

the entire test, whether or not a packet send occurs at that point. Time-based attack

injection is also overly fine-grained. It will attempt to inject an attack at every possi-

ble point in time. However, practical attacks are likely to have much broader timing

constraints—on the order of an RTT or between packet sends. Thus the time-based

scheme will test numerous attack scenarios that are practically identical.

Protocol state aware attack injection. Our approach to eliminate some of

the redundant testing scenarios, support blind attackers, and provide finer granular-

ity for injecting attacks is to take into account the semantics of the protocol when

injecting attacks. We can obtain information about the semantics of the protocol

from its connection state machine. Many transport protocols have well documented

state machines describing their connection lifecycles, and in the absence of such doc-

umentation, work in state machine inference may be leveraged [63].
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We propose a state-based search strategy that leverages several characteristics of

the protocol’s connection state machine to reduce the attack search space. Specifically,

we inject attacks at specific states in the protocol execution, as shown in Figure 4.2(c).

Because the protocol’s connection state machine defines key points in the operation of

the protocol, this approach allows us to quickly gain wide coverage within the search

space by focusing on each of these states. We also treat all attack injection points

in the same state in the same manner. This further prunes the number of search

paths to be explored. The motivation behind our approach is that two packets of the

same type received in the same protocol state usually cause similar results; however,

an identical packet received in two different states may cause significantly different

results.

In order to apply our protocol state aware attack injection, we need a mechanism

to infer which state a protocol connection is in. As we do not require access to the

source code, we use packet monitoring to infer this state. This is accomplished by

a state tracking component (see Figure 4.1) that uses a description of the protocol’s

connection state machine supplied by the user. This state machine provides infor-

mation about what packets determine transitions from one state to another. At run

time, the state machine tracker infers changes in the connection state machines of

each endpoint by observing the packets exchanged and matching them with state

transition rules, as shown in Algorithm 1. The state tracking component also keeps

track of some basic information about each observed state, including the packet types

observed in that state.

Note that this strategy assumes that implementations have correctly implemented

the protocol’s connection state machine as described in their specification. Existing

work on state machine verification [64] could be leveraged to overcome this limita-

tion. However, connection state machines are unlikely to be implemented incorrectly

because of their simplicity, high granularity, and importance to the protocols. Taking

TCP as an example, the state machine has 11 states in total and all data transfer,

and associated retransmissions and congestion control, takes place in a single state
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(see Figure 2.2). A mistake in this state machine has a similar impact to getting the

packet header formats wrong; while the implementation may work with itself, it will

fail simple interoperability tests.

Algorithm 1: SNAKE Connection State Tracking

Input: Connection State Machine Graph G = (V,E) where all e ∈ E contains e.recv
and e.send, the packets sent and received during the transition

Output: h.CurrentState variable indicating the current connection state, as seen
on host h

1 Function Init(h)
2 if ht is Server then
3 h.CurrentState = LISTEN

4 else
5 h.CurrentState = CLOSED

6 return

7 Function OnPacket(p,h,E)

8 foreach e ∈ G.E do
9 if e.from == h.CurrentState then

10 if e.recv == p.type or e.send == p.type then
11 h.CurrentState = e.to
12 return

13 return

4.2.3 Attack Strategy Generation

Based on the packet types and connection state machine information, we automat-

ically generate attack strategies. For each packet type we generate the basic attacks

described below.

We conducted an extensive study of the literature on transport protocol attacks

to develop these basic attacks. All of these attacks are conducted by our attack proxy

at a packet level, either one packet at a time or considering several packets together.

Malicious Endpoint attacks. The first set of basic attacks we developed inter-

fere with packet delivery or packet content. Packet delivery attacks model a malicious
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client who either ignores certain packets entirely or who delays processing packets in

order to interfere with the protocol. Packet content attacks model a malicious client

who sends packets that contain unexpected or invalid values.

We consider the following packet delivery attacks: drop, duplicate, delay, and

batch.

Drop: The attack proxy intercepts and drops a packet with a given probability

specified as a parameter in percent. This attack may impact many of the core fea-

tures of transport protocols from connection establishment to connection tear down,

depending on when it is applied.

Duplicate: The attack proxy intercepts a packet and then sends multiple copies

of it to the destination. The number of duplicates to inject is specified as a param-

eter. This attack could impact many features of a transport protocol, but fairness

and congestion control are particularly vulnerable. Acknowledgment duplication, in

particular, can cause fairness problems [11].

Delay : The attack proxy intercepts a packet and then inserts a delay before

sending it on. The delay is specified as a parameter in seconds. Depending on the

length of the delay, this attack may cause reordering or retransmission situations.

It may also interfere with RTT estimation, which is usually a key component of

retransmission algorithms.

Batch: The attack proxy intercepts packets and waits some amount of time before

sending them all at once. The wait time is a parameter specified in seconds. This

attack is designed to find attacks similar to the Shrew and Induced-Shrew attacks [8,

9].

We also consider the following packet content manipulation attacks: reflect and

lie.

Reflect : The attack proxy intercepts a packet and sends it back to its originating

host. This attack models sending an unexpected, but potentially valid, packet. It

is particularly likely to disrupt connection establishment and termination. Consider,



41

for example, the TCP Simultaneous Open Attack where an attacker responds to a

SYN packet with another SYN packet [7].

Lie: The attack proxy intercepts a packet and modifies a specified field before

sending it on. Modifications supported include setting particular values, setting ran-

dom values, or adding/subtracting/multiplying/dividing the current value by some

factor. The field and the type of modification are parameters. We use a list of mod-

ifications chosen based on the field-type to be likely to cause unexpected behavior.

These include setting values like 0, the maximum value a field can handle, and the

minimum value a field can handle. This attack may impact all of the core features of

transport protocols from connection establishment to connection tear down, depend-

ing on when and where it is applied.

Blind attacks. The second set of attacks we developed are attacks on a connec-

tion by a blind attacker. These attacks spoof packets such that they appear to come

from the client or the server in a target connection. We consider the following blind

attacks: inject and hitseqwindow.

Inject : The attack proxy injects a new packet into the network. This attack

contains a number of parameters describing the fields in the packet, its source and

destination, and when it should be injected (in seconds from emulation start). Many

parts of a transport protocol may be affected by such an attack, from reliability to

connection tear down.

HitSeqWindow : This attack is very similar to inject. Instead of injecting just

one packet, the attack proxy injects a whole series of packets with their sequence

numbers spanning the whole possible sequence range. This attack is designed to look

for attacks similar to the Reset and Syn-Reset attacks on TCP [3,12].

Note that one can also consider more complex attack strategies that combine the

basic attacks described above into strategies consisting of sequences of actions. We

currently support only the basic attacks described above.
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Figure 4.3.: SNAKE Test Network Topology

4.3 Implementation

In this section, we discuss how we implement SNAKE. We first present an overview

of the whole platform and then discuss our attack proxy, state tracking, and paral-

lelism in more detail. See also Figure 4.1.

4.3.1 Overview

We separate the functionality of SNAKE into two components: a controller that

generates attack strategies and one or more executors that test the strategies.

The controller generates and selects the attack strategies based on the packet

formats and the connection state machine transitions obtained from the protocol

specification supplied by the user. An executor first runs a non-attack test and then,

for each strategy, runs the attack scenario and reports performance information back

to the executor, who determines whether an attack took place or not. SNAKE uses

parallelism to run multiple executors concurrently and speed up the attack finding

process.

The executor controls the execution of a testing scenario consisting of a set of

four virtual machines each running an unmodified instance of the protocol under

test. These virtual machines are connected in a dumbbell topology using a network

emulator and tap devices. We use KVM as the virtualization environment and NS-3

for network emulation.
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A dumbbell topology consists of two machines on each side of a bottleneck link as

shown in Figure 4.3. In our setup, the two machines on one side act as servers while

the two on the other act as clients. We configured our attack proxy to be between one

of the clients and the bottleneck link. The other client makes a connection to a server

that we refer to as the competing connection, as it will compete with the connection

through our proxy for bandwidth on the bottleneck link. This topology allows us

to test attacks from both endpoint and blind attackers. An endpoint attacker is

usually interested in targeting the fairness of the transport protocol or launching a

resource-exhaustion-based denial of service attack against the server while a blind

attacker often wishes to terminate or slow a connection between two other hosts. See

Section 3 for a more detailed discussion of these types of attackers and attacks.

To determine successful attacks, the controller examines the performance of the

client without the attack proxy (Client 2 in Figure 4.3) and the number of connections

the server is maintaining at the end of the test. This information is obtained by

the executor. Specifically, the executor calculates performance as the quantity of

data transferred during the test and queries the OS to determine the number of

connections maintained by the server, for example, by using the netstat command

on UNIX-based systems. After the test completes, the executor sends these metrics

to the controller, which compares the received metrics with metrics observed in a

non-attack test run.

The executor is implemented as a Perl script that listens for strategies from the

controller and then initializes the virtual machines from snapshots, starts the network

emulator, configures the attack proxy, and starts the test. Once the test completes,

it collects the performance data and any feedback from the attack proxy and sends

this back to the controller.

The controller is implemented in a combination of C and Perl and is responsible

for choosing strategies to execute and determining attacks based on the performance

data returned by the executor. Instead of generating all of the attack strategies

at once, we implement our controller to generate them a few at a time in response
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to feedback about packet types and protocol states observed by the state tracking

component of our attack proxy. This is equivalent to generating all the strategies at

once but is a little more flexible.

4.3.2 Attack Proxy

Our attack proxy intercepts all packets along the ingress and egress paths in NS-3.

We modify NS-3 to allow us to designate malicious nodes and only intercept packets

to or from those nodes. The interception is done in NS-3’s tap-bridge module, which

connects NS-3 to outside tap-devices serving the virtual machines.

When the attack proxy receives a packet, it examines it to determine the protocol.

Protocols not of interest are returned to the tap-bridge for normal processing. For

packets of the target protocol, the type of the packet is examined and the sender’s

protocol connection state is identified from the state tracking system. If there is a

matching strategy, the basic attack is performed on the packet. To accomplish this,

our proxy needs a description of the protocol’s grammar or packet header format.

We use a simple language to describe this grammar and then automatically generate

C++ code to parse and modify the header.

Our malicious proxy is also capable of injecting packets into the network. Proper

packet headers are generated from the protocol grammar as part of our automatically

generated C++ protocol processing code, and the resulting packets can then be sent

using standard NS-3 packet send mechanisms.

4.3.3 State Tracking

We implement our protocol connection state machine tracking inside the attack

proxy. The tracker takes a description of the protocol’s connection state machine,

written in the dot language [65], as input. This description contains the state tran-

sitions, including the packets or actions that cause these transitions or result from

them. The use of a standardized graph language like dot to represent this state



45

machine enables the use of SNAKE on a variety of two-party protocols simply by

swapping out the connection state machine and packet header descriptions.

Our state machine tracker watches the packets that pass through the proxy and

uses the state machine transition rules to infer what connection state the client and

server are currently in. The state machine tracker also collects some useful statistics

about each state in the protocol. This includes what packet types and how many

packets were sent and received during each state. It also includes the amount of time

each host spent in each state and the number of times it visited that state. These

statistics are extracted from the attack proxy by the executor at the end of each test

and then sent to the controller along with the performance information.

4.3.4 Parallelism

We have implemented SNAKE as separate controller and executor modules to en-

able parallelism. These modules can even reside on separate systems, as all commu-

nication is done via TCP. Because testing each strategy takes about two minutes this

becomes a highly parallel problem, with linear speedup limited only by the amount

of processing power that can be thrown at the problem.

Each executor requires significant resources, as it will start four virtual machines

and an NS-3 instance. In practice, we found that running about one executor for

every six hyperthreads resulted in good performance. The memory requirements

per executor depend primarily on the demands of the implementation and operating

system under test. In our tests, they ranged around 4-8GB per executor.

Our controller requires little processing power since its primary responsibility is

to identify attacks based on the performance information returned by the executors

and to supply new attack strategies to the executors. In our experiments, we did not

find it necessary to dedicate a core to the controller.
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Table 4.1.: Summary of SNAKE Results

Proto Impl Strats
Tried

Attack
Strats
Found

On-path
Attacks

False
Positives

True
Attacks

Attack
Classes

TCP Linux 3.0.0 5994 128 82 5 41 4
TCP Linux 3.13 5717 163 105 10 48 3
TCP Windows 8.1 5549 137 118 2 17 4
TCP Windows 95 5013 147 122 3 22 3

DCCP Linux 3.13 4508 67 27 2 38 3

4.4 Results

We applied SNAKE to test two protocols and a total of five transport protocol

implementations on four different operating systems. The two protocols we tested

were TCP and DCCP. For TCP, we tested implementations in Linux 3.0.0, Linux

3.13, Windows 8.1, and Windows 95. For DCCP, we focused on the implementation

in Linux 3.13. We were able to find attacks on all implementations, including several

previously unknown attacks. We discuss these protocols and present our findings

below, and summarize them in Tables 4.1 and 4.2.

All of these tests were run on a hyperthreaded 16 core Intel R© Xeon R© 2.3GHz

system with 94GB of RAM. We ran five separate executors simultaneously. Testing

each implementation required about 60 hours, but this duration could be decreased

by running more executors.

We define successful attacks as strategies that result in an increase or decrease in

achieved throughput of at least 50% compared to the non-attack case or that cause

the server-side socket to not be released normally after the connection is closed. This

throughput threshold is based roughly on the notion that reasonable competition for

network flows is achieving throughput within a factor of two of each other [32,33] as

well as on experience.
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Table 4.2.: Classes of Attacks Discovered by SNAKE

Proto Attack Description Impact Operating
System

New

TCP CLOSE WAIT
Resource
Exhaustion

Connections hang on
server if client exits and
resets are dropped

Server DoS Linux 3.0.0
Linux 3.13

Partially
[66]

TCP Packets with
Invalid Flags

The handling of invalid
flag combinations could
allow OS fingerprinting

Finger-
printing

Linux 3.0.0
Win 8.1

Yes

TCP Duplicate
Acknowledgment
Spoofing

Frequently duplicat-
ing acknowledgments
causes sender to in-
crease window faster
than normal

Poor
Fairness

Win 95 No [11]

TCP Reset Attack Brute force a sequence-
valid reset

Client DoS All No [13]

TCP SYN-Reset
Attack

A sequence-valid SYN
causes connection reset

Client DoS All No [3]

TCP Duplicate
Acknowledgment
Rate Limiting

Occasionally duplicat-
ing acknowledgments
result in indicated loss
and connection slow
down

Throughput
Degradation

Win 8.1 Yes

DCCP Acknowledgment
Mung Resource
Exhaustion

Connection will hang
waiting for timeouts to
empty send queue if ac-
knowledgments are dis-
rupted

Server DoS Linux 3.13 Yes

DCCP In-window
Acknowledgment
Sequence
Number
Modification

Connection can be
throttled by increment-
ing sequence number
in an acknowledgment,
resulting in a forced
resync

Throughput
Degradation

Linux 3.13 Yes

DCCP REQUEST
Connection
Termination

Any packet except Re-
sponse received in RE-
QUEST state results in
connection reset

Client DoS Linux 3.13 Yes
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4.4.1 TCP

We tested TCP in one of its most popular settings, HTTP. Specifically, we utilized

a large HTTP download with Apache or IIS running on the servers and wget for

clients.

For each of our TCP implementations, SNAKE tried between five and six thousand

strategies and determined that between 128 and 163 of these (depending on the imple-

mentation) resulted in significant performance degradation or potential for resource

exhaustion. These attack strategies represent around 3% of the tested strategies.

On-path attacks. Some of the attacks we found, while possible, require an

on-path attacker. Strategies like modifying the source or destination ports or the

header size do prevent a connection from being established, but these strategies are

not possible for blind attackers and an endpoint attacker could simply not initiate

a connection. These attacks can be conducted by an on-path attacker. However, as

TCP was not designed to handle such attackers, we are not interested in these types

of attacks.

False positives. We found a few attacks that were false positive strategies for

each implementation. These were related to the hitseqwindow basic attack. This

attack injects numerous packets in an attempt to get one packet into the sequence

window of a target connection. Unfortunately, the injection of such a large number of

packets tends to slow down the target connection significantly, irrespective of whether

the packets have any malicious impact. We manually inspect the packet captures for

attacks using this action to determine why an attack was declared and identify false

positives when the reduced performance is caused by the number of packets injected,

and not by hitting the target sequence window.

Endpoint and blind attacks. Discarding the false positive and on-path attacks

results in a set of between 17 and 48 (depending on implementation) attack strategies.

However, many of these strategies are functionally the same attack, just performed

on a different field or with a different value. Ultimately, we found a total of six unique
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classes of attacks, several of which are effective against multiple implementations. We

discuss each of these classes of attacks in detail below.

CLOSE WAIT Resource Exhaustion Attack (partially known). This

class of attack results in connections staying alive on the server in the CLOSE WAIT

state for tens of minutes after the client closes them. An attacker can easily ini-

tiate hundreds of thousands of such connections before they begin to expire, likely

rendering the server unavailable.

CLOSE WAIT is the TCP state that the passive close side of a TCP connection,

usually the server, remains in after receiving notification of remote close and while

waiting for the local application to close the connection. After the local close, the

connection must remain in this state until a FIN can be sent.

If a Linux TCP client exits while in the middle of a data transfer (like an HTTP

download), Linux will send a FIN packet and then not acknowledge any more data

on the connection; any further packets will generate a reset. This is valid behavior

according to the RFC since the application will never receive this data [34]. If these

reset packets are blocked, it will appear to the sending TCP that the whole in-

flight window of packets was lost, triggering congestion avoidance and a series of

retransmissions that will never succeed.

When the server application eventually closes the TCP connection, TCP will

transition to the CLOSE WAIT state where it needs to remain until all outstanding

data is acknowledged, including the lost window of packets that were in-flight when

the client exited. These packets will never be acknowledged, meaning that TCP is

stuck in CLOSE WAIT with (possibly significant) data queued on the socket. Linux will

eventually force-close a TCP connection due to lack of delivery, but that requires 15

retries by default, which is between 13 and 30 minutes depending on the RTT [67].

To the best of our knowledge, this attack class is unreported in the research

literature. However, system administrators have been aware of similar problems with

connections stuck in CLOSE WAIT for many years [66]. SNAKE found this attack on

Linux 3.0.0 and Linux 3.13.



50

Packets with Invalid Flags (new). Recall that the TCP header includes several

flags that indicate the packet type. Not all combinations of these flags make sense.

For instance, a packet with SYN+FIN+ACK+RST flags would indicate a packet starting

a connection, closing the connection, acknowledging a packet in the connection, and

resetting the connection. This is clearly a nonsensical combination. One would expect

a TCP implementation to ignore such invalid packets. However, both Linux 3.0.0 and

Windows 8.1 respond to such invalid packets in an active connection.

Linux 3.0.0 attempts to interpret these nonsensical flag combinations as best it

can. This results in sending a duplicate acknowledgment in response to a packet

with no flags set, a situation that is never valid. We have also observed Linux 3.0.0

attempting to process SYN+FIN and SYN+FIN+ACK+PSH packets. Note that Linux 3.13

appears to have fixed these problems and no longer responds to such invalid packets.

Windows 8.1 will also process and respond to invalid packets. However, it follows

a different approach. If the RST flag is set, the connection is reset irrespective of what

other flags might also be set. Otherwise, nonsensical flag combinations are ignored.

Responding to packets with invalid flag combinations is not by itself a security

issue. We have found no instance where responding to invalid flag combinations

achieves something that is not possible with valid flag combinations. However, a

target’s responses to invalid flag combinations could be used to fingerprint the partic-

ular TCP implementation in use, indicating other possible vulnerabilities to exploit.

Further, packets with invalid flag combinations may be interpreted differently by

end hosts and middleboxes like firewalls and intrusion detection systems, providing a

possible way to subvert such middleboxes.

Duplicate Acknowledgment Spoofing (known). This is a classic class of

TCP attacks originally discovered by Savage, et al. in 1999 [11]. These attacks oper-

ate against näıve TCP implementations where the sender increases their congestion

window for every acknowledgment received, without checking for duplicates or check-

ing how much data is currently outstanding in the network. As a result, a receiver

can significantly increase its achieved throughput by simply acknowledging packets
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multiple times, thereby increasing the sender’s congestion window much faster than

normal.

These attacks require frequent duplication of acknowledgments to be meaningful,

as each acknowledgment only increases the congestion window by a very small amount.

In addition, if acknowledgments are duplicated more than three times, TCP will react

as if a loss occurred, halve its congestion window, and enter fast recovery. However,

in this mode, each acknowledgment received results in a new packet being sent. This

simplifies the attack by allowing the attacker to control the sending rate by controlling

the acknowledgment rate.

There are mitigations to these attacks, including only allowing the congestion

window to be incremented by the number of data segments outstanding in the net-

work. Another option would be a nonce in the TCP header and a sender side register

allowing acknowledgment of each nonce only once.

In our tests, SNAKE discovered this attack class against Windows 95 and was able

to use it to increase a malicious connection’s throughput by a factor of 5. SNAKE did

not find this attack class against any other tested implementation, which is expected

as this attack class and its mitigations were well known by the time they were released.

Reset Attack (known). This class of attack works by spoofing a large number

of resets for a target connection. If one of these resets is sequence-valid, the receiving

TCP will reset the connection. The work in [13] showed these attacks to be much more

practical than previously supposed by pointing out that a reset packet anywhere in

the receive window is sufficient to reset the connection. Thus, one could send packets

at receive window intervals, greatly reducing the number of packets required.

In our testing, SNAKE discovered this attack class against all of our TCP imple-

mentations. Since these attacks utilize a feature of the TCP specification itself, all

implementations should be vulnerable. The only thing implementations can do to

protect themselves is to keep their receive window small.

SYN-Reset Attack (known). This attack class is very similar to the Reset

Attack discussed above. In this case, the TCP specification says that the receipt of
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a sequence-valid SYN packet on an active connection should result in the connection

being reset. As a result, an attacker can spoof a large number of SYN packets at receive

window intervals in an attempt to slip one into the target connection’s sequence

window, resulting in a connection reset. This attack has been known since at least

2009 [3].

In our testing, SNAKE discovered these attacks against all of our TCP imple-

mentations. Like the Reset Attack, this attack class utilizes a feature of the TCP

specification itself, which makes it difficult for implementations to protect against.

Duplicate Acknowledgment Rate Limiting (new). Duplicate Acknowledg-

ment Rate Limiting is a new class of attack that SNAKE discovered against Windows

8.1. It operates by duplicating PSH+ACK packets, which occur only occasionally in the

data stream, ten times. This causes duplicate acknowledgments to be sent to the

sender by the receiver. After three duplicate acknowledgments, the sender halves its

congestion window and retransmits the indicated packet.

So far, this is standard TCP behavior common to all TCP New Reno implemen-

tations. However, for a Windows 8.1 server and a Linux 3.0.0 client, we observe a

throughput degradation of a factor of 5 compared to the competing flow. Both of

the Linux implementations we tested show throughput consistent with normal TCP

competition in this scenario; that is, approximately fair bandwidth sharing.

4.4.2 DCCP

For DCCP testing, we used iperf to measure throughput. Since DCCP is not a

reliable protocol, we measured performance based on server goodput, or actual data

received. As DCCP is currently only supported on Linux and is fairly uncommon, we

focused our efforts on a single implementation, the Linux kernel 3.13 implementation.

SNAKE tried just over 4,500 strategies against DCCP. Of these, it identified 67

candidate strategies that caused significant performance issues or potential resource

exhaustion. This is about 1.5% of the total strategies tested.
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On-path attacks. As with TCP, DCCP was not designed to be resilient to

on-path attacks. Thus, we exclude all on-path attacks found by SNAKE.

False positives. We also found 2 attacks that were false positives. As with TCP,

these attacks are both hitseqwindow strategies that attempt to inject packets into a

target connection at sequence window intervals. Injecting this quantity of packets

tends to significantly slow down the competing target connection, irrespective of any

malicious impact of the injected packets. Thus, these strategies tend to fall below

our attack threshold.

Endpoint and blind attacks. Discarding the on-path attacks and the two false

positives leaves us with 38 strategies that represent actual attacks. However, many

of these strategies are functionally the same attack, just repeated on different fields

or with different values. Ultimately, we found three classes of attacks; none of which

have been reported in the literature. We discuss each of these classes of attacks below.

Acknowledgment Mung Resource Exhaustion Attack (new). This class

of attack is possible because a DCCP sender will not close a connection until its send

queue is empty. This send queue defaults to 10 packets, but may be much larger for

applications like video streaming. As a result, if a connection’s congestion control

can be persuaded to send at the minimum rate, a connection can be held in an open-

but-useless state for a very long time. By repeating this process, one can create an

effective resource exhaustion attack that may render the target host unavailable.

Note that DCCP does not retransmit data. As a result, while similar attacks

against TCP last until TCP gives up retransmitting a particular packet and resets the

connection, DCCP will continue sending at its minimum rate until the application and

the human trying to use it explicitly close the connection. Once the application closes

the connection, DCCP will send all queued packets and then close the connection and

free related resources.

There are several ways to convince DCCP’s congestion control to send at its

minimum rate. Most of them work by invalidating or dropping the acknowledgments
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from the receiver. Modifying the sequence or acknowledgment numbers are very

effective because this results in an additional exchange of SYNC and SYNCACK packets.

In-window Acknowledgment Sequence Number Modification (new). This

attack class targets sequence numbers in the receiver’s acknowledgment packets. Re-

call that sequence numbers in DCCP are per-packet and that every packet increments

the sequence number; even pure acknowledgment packets.

If the sequence number of one of these acknowledgments is increased, such that it

is still sequence valid, the sender will begin to acknowledge this bad acknowledgment

number in its data packets. However, when the receiver receives these data packets

it will find they acknowledge packets that have not yet been sent. As a result, it

will drop these packets and send a SYNC in response. The SYNC packet will result

in a SYNCACK packet from the sender, resynchronizing the sequence numbers and

allowing the connection to proceed. However, by that point an entire window of

packets will have been dropped, resulting in DCCP’s congestion control reducing the

connection’s allowed sending rate. It may even trigger a timeout and subsequent slow

start, assuming DCCP’s CCID 2 congestion control is in use.

To perform these attacks, an attacker does not have to be an endpoint. It suffices

to be able to sniff and spoof network traffic (i.e., an off-path attacker). Such an

attacker can inject an acknowledgment with a slightly higher sequence number and

trigger this vulnerability.

REQUEST Connection Termination Attack (new). This class of attack is

an effective way to terminate a connection during the connection initiation phase. A

client enters the REQUEST state on initiating a connection, immediately after having

sent a REQUEST packet to the server, and stays in this state until it receives a RESPONSE

packet from the server.

The only valid packets in the REQUEST state are RESPONSE or RESET; any other

packet results in a reset. Note that both the pseudo-code in RFC 4340 [45] and the

Linux 3.13 DCCP implementation perform this packet type check before checking the

sequence numbers. Thus, it is possible to reset a DCCP connection in the REQUEST
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state by sending any non-RESPONSE packet with any sequence and acknowledgment

numbers.

This makes this attack class exploitable by anyone who can sniff and spoof packets

(i.e., an off-path attacker). A blind attacker can also launch this type of attack, if

they can guess the connection initiation time (to within an RTT) and the source port.

4.4.3 Benefits of State-based Strategy Generation

Our state-based strategy generation algorithm enabled us to find 9 attacks against

2 transport protocols and a total of 5 implementations. 5 of these attacks were

previously unknown. To accomplish this, we required about 60 hours per tested

implementation. Removing parallelism, this becomes 300 hours of computation per

tested implementation.

By contrast, the time-based attack injection approach discussed in Section 4.2.2

requires trying our malicious strategies at intervals of 5 microseconds, which is roughly

the amount of time needed to send a minimum sized TCP packet at 100Mbits/sec.

Thus, there are 12 million possible injection points in a 1 minute test connection.

For each of these injection points, we would have to test about 60 different malicious

strategies resulting from the 8 general malicious actions and the 13 fields in the TCP

header. This results in 720 million strategies to test.

At 2 minutes to test each strategy, this would require 24 million hours of compu-

tation. At an equivalent level of parallelism, this would take 548 years to complete,

which is clearly impractical.

The send-packet-based attack injection approach is more practical. A one minute

non-attack test with TCP results in the sending of about 13,000 packets. For each of

these packets, we would need to test about 53 different malicious strategies for packet

manipulation, resulting in a total of 689,000 strategies. This would require 22,967

hours of computation. At an equivalent level of parallelism, this would take about

191 days.
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However, send-packet-based attack injection provides no support for packet injec-

tion attacks modeling blind attackers. As a result, it would be impossible to find the

Reset and Syn-Reset attacks using this attack injection model.

4.5 Natural Language Processing Pipeline

We now consider how to automatically extract the protocol descriptions that

grammar-based fuzzers, like SNAKE, depend on to automatically find attacks. These

descriptions encode the layout of packet fields and protocol semantics. For example,

consider the TCP protocol (its header is shown in Figure 2.1) where bytes 17 and

18 contain a checksum of the rest of the TCP header. A test packet that contains a

modified field and wants to test a particular part of the code must also contain the

correct checksum in order to pass the trivial checksum check and reach the desired

part of the code. Similarly, bit 6 of byte 14 (the URG field) controls whether bytes

19 and 20, the urgent pointer field, are interpreted or not. Hence, a test packet to

test an urgent pointer value of 10, must set bytes 19 and 20 and set bit 6 of byte

14 to one.

Unfortunately, these protocol descriptions are usually created manually by an

expert and are not easily transferable from one protocol to another. As a result,

many grammar-based network protocol fuzzers, including SNAKE, suffer from lim-

itations like: (1) time-consuming manual protocol definition, (2) difficulty adapting

to new protocols, (3) poor test coverage, and (4) false positives that must be manu-

ally triaged. However, we observe that there is an untapped resource of information

available for network protocols in the form of natural language specification docu-

ments, e.g., RFCs. With the recent interest in using data to solve problems in several

fields, we ask the question: “Can we leverage natural language specifications of proto-

cols to improve protocol fuzzers?” It seems likely that the information that is manually

extracted by human experts today could be extracted in an automated manner with

the help of Natural Language Processing (NLP) tools.
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Extracting protocol information from natural language text is not a straight-

forward task. Natural language text has inherent ambiguity and the writers of pro-

tocol specifications often rely on the reader’s understanding of context and intent.

Thus, it is not easy to automate information extraction by simply specifying a set of

rules. The natural language community has shifted its focus to statistical methods to

address this ambiguity, but domain adaption remains a major challenge. Specifically,

most NLP methods are sensitive to the data used at training time and do not adapt

easily if applied on data from a different domain. Applying “off-the-shelf” implemen-

tations of NLP tools, typically trained on newswire data, or combining them in an

ad-hoc way, often results in reduced performance and brittle applications.

Previous work has applied NLP techniques to related problems. WHYPER [68]

and DASE [69] apply NLP techniques to identify sentences that describe the need for a

given permission in a mobile application description and extract command-line input

constraints from manual pages, respectively. The work in [70] used documentation

and source code to create an ontology allowing the cross-linking of software artifacts

represented in code and natural language on a semantic level. These approaches focus

on a small, predefined set of entities; analyze small, structured sentences; and use

rule-based approaches. Other works infer protocol specifications using network traces

[71–75], program analysis [18, 76–78], or model checking [79, 80]. These approaches

rely extensively on input from human experts and do not easily generalize to new

software or protocols.

In this section, we study how to improve the coverage and effectiveness of grammar-

based fuzzers for network protocols through automated learning of protocol rules from

existing textual documentation. We focus on RFCs1 as this is the most common form

in which Internet protocols are specified. They also follow some writing guidelines [81]

that render them more amenable to automated learning. We first define the problem

of grammar extraction as a set of NLP tasks and then design an NLP framework to

solve these tasks. We then evaluate our framework in terms of its ability to extract

1An RFC is a formal document from the IETF that is the result of committee drafting and subsequent
review by interested parties.
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protocol grammars from a set of 7 protocol RFCs and demonstrate the usefulness of

the extracted information by applying it to SNAKE.

4.5.1 Problem Definition

In this section we formulate the problem of automating protocol grammar ex-

traction from natural language protocol specification documents as a set of NLP

problems. First, we describe background on relevant NLP concepts, and then we

define the problem of protocol grammar extraction.

Relevant NLP Background

NLP overview. Natural language processing tasks are organized hierarchically,

into low level tasks, defined over words and phrases, and higher level tasks, defined

over sentences and even the entire document. The set of tools developed by the NLP

community for basic text processing is usually known as the NLP pipeline. These

tools are chained together, such that outputs of low-level tasks are used as inputs to

more advanced tasks [82].

Low level tasks include word and short phrase analysis, such as segmentation, part-

of-speech (POS) tagging [83,84], and entity extraction [84,85]. More advanced tasks

capture long-range relationships between words, either within a given sentence or

across multiple sentences. For example, a dependency parser [86,87] constructs a tree

connecting the words of a given sentence based on their syntactic dependencies (e.g.,

subject). A co-reference resolution system connects noun phrases that correspond to

the same entity [82].

One of the key NLP challenges is domain adaption, accounting for the differences

between the training domain used to train tools (typically, this is newswire data) and

the test domain, over which the tools are used after training (in our case, technical

documents).
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Figure 4.4.: NLP Analysis: two possible outcomes for the senses of the word “points”
(top: verb, bottom:noun)

To help clarify these concepts, Figure 4.4 describes the output of several NLP tools

over the sentence “the urgent pointer points to the sequence number of the octet” from

the TCP specification [34]. We predict the POS tags for each word, corresponding

to determiners (DET), nouns (NN,NNS), verbs (VBZ), and prepositions (IN,TO). We

also identify phrases (known as chunks, marked with brackets). Finally, we identify

syntactic relationships between chunks (e.g., subject and object) using a dependency

parser. We can observe the problem of domain adaptation by considering the two

interpretations of the word “points”. The correct interpretation of this word is as a

verb (see top half of Figure 4.4); however, systems trained over newswire data are

likely to interpret this word as a noun (e.g., “the Dow Jones rose by three points”)

as described in the bottom half of Figure 4.4. Note that this mistake propagates to

other steps in the pipeline, resulting in incorrect chunking and parsing decisions.

Linking Text to Protocol Entities and Relations. The standard NLP

pipeline offers task-independent language analysis. However, many applications (in-

cluding protocol grammar extraction) require a more advanced analysis, mapping the

raw text to an application-specific ontology. For example, the phrase “president Bush”

can refer to two different people. The standard NLP pipeline would identify that the
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phrase corresponds to a PERSON while an entity linking system [88,89] would map the

phrase, based on its context, to an entity in a knowledge-base (e.g., the appropri-

ate Wikipedia entry). Entity linking maps raw entities to a canonical representation

defined by an external knowledge-base and is domain-specific (in our case, protocol

fields). Using relation extraction the identified concepts can then be connected via a

set of specified relations, often expressed as function symbols (in our case, relations

between fields).

Zero Shot Learning for Entity and Relation Linking. The traditional, fully

supervised, approach for constructing NLP tools can be defined as learning a map-

ping, T→E, from a text t to an output symbol ei ∈ E (where E is the set of output

symbols, e.g., protocol entity types). Taking this approach would require annotating

data for each protocol separately, as the set of domain symbols is different for each

protocol. This would result in a prohibitively expensive process and would defeat

our goal of fully automated protocol grammar extraction. Zero-shot learning [20]

addresses this problem as follows. It learns a mapping <T,E>→{t,f} from a tuple

containing the input and output to a Boolean value indicating whether the pair is

correct or not. The main observation behind zero-shot learning is that the set of

output symbols does not have to be fully specified durning training, and unlike tra-

ditional supervised learning, the system is expected to perform well even over outputs

that were not observed during training. In practice, this can be done by learning a

similarity metric, sim(t, ei), and defining the prediction as: arg maxei∈E sim(t, ei).

Protocol Grammar Extraction

A network protocol is first and foremost defined by the header attached to trans-

ported packets. This header often has fixed size (in bits), where certain parts of it,

known as fields, have defined meaning and size. Consider the TCP header presented

in Figure 2.1, which has a size of 20 bytes, where bytes 17 and 18 contain a checksum

of the rest of the header, meaning that those two bytes can be interpreted as a 16 bit
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number. Protocol semantics are defined by the relations that exist between several

fields, in the example above, those 16 bits represent the checksum of all other fields

in the header. Note that not all fields have a size which is a multiple of 8 bits or 1

byte.

Fields, properties, relations. We consider protocol grammars to have three

components: a set of fields that correspond to the header, with each field having a

name, a size (i.e., the number of bits in the field), and an order in the packet header; a

set of properties that can be attached to a field; and a set of binary relations between

these fields.

Specifically, given a header H of n bits, a set of property names P , and a set of

relation operators R, we define a field f as the tuple < name, size, start > where

name is the identifier of the field, size represents the size in bits, and start represents

the starting position in the header H from byte 0. We define a property as the tuple

< f, p > to denote that field f has property p, and we define relations as < f1, r, f2 >

to denote that fields f1 and f2 are connected through relation r. As an example,

consider the TCP header from Figure 2.1. Fields include sequence number, with a

size of 32 bits and a starting position of 4 bytes, and control flags, with a size of

6 bits and a starting position of 13 bytes and 2 bits. A relation exists between two

fields if they are connected to each other. For example, in Figure 2.1, the field urgent

pointer has meaning only if bit 6 of the control flags field is set. A property

indicates something about the purpose or characteristics of a field. For example, in

Figure 2.1 the field data offset indicates the length of the packet header.

We use the term document to refer to any protocol specification. For example,

such a specification can be an RFC.

Given these notations, we define two NLP problems which help extracting the

needed protocol information. The first problem looks at automatically extracting the

set of output symbols from text, while the second problem corresponds to learning

how to link the document text to the set of extracted output symbols.
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Problem 1 - Entity Type (Protocol Field) Extraction. Given a set of

network protocol documents D, we want to extract in an automated way the relevant

protocol field names (including their sizes in bits and order).

Problem 2 - Extracting and Linking Entity Mentions, Properties, and

Relations. Given a set of protocol documents D, a set of (previously extracted)

protocol field names F , a set of property names P , and a set of relations operators

R (specific to the networking domain) we want to extract in an automated way the

properties of the extracted fields and the relations between them.

4.5.2 Design

We describe the design of our framework for automated extraction of protocol

grammars. We first present our approach and then discuss in detail the pipeline we

use.

Our Approach

In designing an NLP pipeline to solve the two problems defined in Section 4.5.1

we have two design goals: (1) minimize the manual supervision effort required for

training and (2) adapt to new protocols without re-training the system. Previous

work that used the output of NLP tools directly via a set of transformation rules

does not adapt well to new protocols. Instead, we propose a lightweight zero-shot

learning framework which can adapt to the specific properties of the network domain

and extract relevant information.

The design of our NLP pipeline is presented in Figure 4.5. The pre-processing

step reads in the raw specification documents and normalizes their structure. The

entity types extraction task leverages the hierarchical structure of protocol specifica-

tion documents, like RFCs. We use a hand-tuned rule-based system leveraging RFC

specific formatting [81,90] for identifying and extracting entity types. Note that this
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Figure 4.5.: System Design for Automated Extraction of Protocol Grammars

step can be extended to accommodate different structures of protocol documentation

or can be replaced with a knowledge-base or domain ontology, when one exists.

For the task of extracting properties and relations, we take an approach where we

first locate entity mentions in the document, and then, by examining the context in

which they are mentioned, we look for properties and relations. For both parts we

use a zero-shot learning approach, where a classifier is trained to look for similarities

between document text and a list of things we are looking for. In the first case,

this is the list of entity types (extracted from the document structure in the prior

step) while in the second case it is a small list of relevant properties and relations.

In both cases we developed new classifiers trained on network protocol data instead

of using an off-the-shelf NLP system since existing systems are trained over data

collected from non-technical domains like newswire, resulting in poor performance in

our highly technical domain.

Finally, the goal of the post-processing step is to transform the data extracted in

the entity extraction and property/relation extraction tasks into a protocol grammar

description. Different tools can then transform this description as needed for different

applications and languages. Below we give more details about each step.
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Pre-processing

The pre-processing stage takes the raw text of the document and prepares it for

the rest of the pipeline while preserving the useful document structure. The output

of this stage are chunks, where a chunk represents a single grammatical phrase, like

a noun phrase or verb phrase, made up of one or more words. The text below shows

an example of “chunked” text from an RFC [34].

[If] [the ACK control bit] [is set] [this field] [contains] [the value]

[of] [the next sequence number the sender] [of] [the segment] [is

expecting to receive] . [Once] [a connection] [is established] [this]

[is] [always] [sent] .

RFC documents are text files formatted with page breaks and page headers to

enable printing. We detect these page breaks and page headers and remove them.

Additionally, we remove any embedded ASCII art tables and images from the docu-

ment.

RFCs follow a structure where the document is divided into many sections with

each section focusing on a particular topic, which may be a packet field, a protocol

state, or a particular action. We find this structure to be very helpful for extracting

entity types, and we preserve it by parsing the text itself into a hierarchical structure

of sections, each of which has a header line, body text, and possible subsections. We

run a set of standard NLP tools from the CoreNLP [82] package over the section

bodies and headers to split each section into sentences and then compute part-of-

speech (POS) tags for each word and the parse-tree for each sentence. Based on these

POS tags and the parse-tree, we split each sentence into chunks.

Even for these simple tasks, we have to make allowances for the mis-match be-

tween the newsprint domain that standard NLP tools are trained for and our tech-

nical domain. In particular, RFCs capitalize some very common words like MUST,

SHOULD, and MAY to give them specific, technical meaning [91]. This confuses

CoreNLP’s POS tagging, which is trained on newswire. We, therefore, identify these

special words, mark them, and convert them to lowercase before doing POS tagging.



65

Entity Types Extraction

The entity types extraction stage performs named entity recognition. It takes

the pre-processed document and extracts the entity types, or packet fields, from the

document. In addition to the entity types themselves, it also extracts their size (i.e.,

number of bits in the field) and their order.

We find that the document structure we preserved in the pre-processing step

enables us to extract this information with a simple rule-based system. In particular,

each entity type is described in order by a section, with the name and size of the entity

type as the section title. Hence, we scan all section headers in the document, ignoring

high-level section headers that begin with a number. Further, we ignore headers

containing function words, as these do not occur in field names. The remaining

section headers refer to the entity types and are in packet order. To parse each

section header, we check for a colon separating the entity type’s name from its size

and for commas or the word “and” indicating multiple entity types in a single section

header. This results in a list of entity types with their sizes and order. An example of

entity types extracted by this method from one of the RFCs in our dataset is below:

1,Source Port,16 bits

2,Destination Port,16 bits

3,Sequence Number,32 bits

4,Acknowledgment Number,32 bits

5,Data Offset,4 bits

6,Reserved,6 bits

7,Control Bits,6 bits

8,Window,16 bits

9,Checksum,16 bits

10,Urgent Pointer,16 bits

11,Options,variable

12,Maximum Segment Size Option Data,16 bits

13,Padding,variable
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Table 4.3.: Protocol Fields

Protocol Number of Entity Types Examples of Entity Types

UDP 4 Length, Source Port
TCP 18 Data Offset, Window
SCTP 40 Verification Tag
IPv6 20 Flow Label, Version
IP 22 Flags, Type of Service
GRE 6 Protocol Type, Checksum
DCCP 18 Source Port, Type

Entity Mention Identification

In order to extract properties and relations from documents, we first need to

find where the entity types specific to each network protocol are mentioned in the

document. Once we find these mentions, we can then look at the context where they

are mentioned to identify properties and relations. For this task, the needed inputs

are the pre-processed document and the list of entity types. We used the entity types

list we extracted automatically from each document, but any ontology consisting of

relevant entity types could also be used.

Since entity types vary dramatically both in name and number between documents

(i.e., protocols), as shown in Table 4.3, we use a zero-shot learning approach [20].

Instead of training a classifier to identify mentions of specific entity types, we consider

the entity type to be a second input and build a classifier to identify references to

the given entity type in an input text. The resulting classifier learns a similarity

metric between text snippets that takes into account character level similarity, writing

style (e.g., capitalization patterns, abbreviations), and relevant context words. This

approach allows our classifier to generalize to previously unseen entity types that

appear in new protocol documents.

Specifically, we define a binary classification problem over all pairs (ej, ci) where

ej represents each entity type and ci represents a chunk in the document text, as

shown in Figure 4.6. If the chunk ci contains a reference to entity type ej, the pair is
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Chunked	Text:
[The	urgent	pointer]	[points]	[to]
[the	sequence	number]	[of]	[the	
octet]	[following]	[the	urgent	data]	.	
[This	field]	[is]	[only]	[be	
interpreted]	[in]	[segments]	[with]		
[the	URG	control	bit	set]	.	

Entities:
Source	Port
Destination	Port
Sequence	Number
Acknowledgment	No
Data	Offset
Reserved,
Control	Bits
Window
Checksum
Urgent	Pointer
Options

Is	Entity	in	
Chunk?

Is	Entity	in	
Chunk?

Is	Entity	in	
Chunk?

Is	Entity	in	
Chunk?

Figure 4.6.: Example of Zero-shot Learning Classification for Entity Mentions

labeled as a positive example. The pair is labeled as a negative example otherwise.

This way we learn a similarity score between ej and ci that is able to generalize to

different entity types. We train an SVM classifier for this problem using the set of

binary features shown in Table 4.4. The text below shows an example of the output

of our entity mention identification classifier; note that acknowledgement number

and sequence number are entity types that were extracted during the entity types

extraction stage.

If the ACK control bit is set [(entity mention: Acknowledgement Number)

this field] contains the value of [(entity mention: Sequence Number) the

next sequence number the sender] of the segment is expecting to receive.

Once a connection is established this is always sent .

Property and Relation Extraction

The property and relation extraction stage identifies particular properties of and

relationships between entity types and extracts them from the document body. We

seek to identify a fixed set of properties and relations; however, the set of entity types

related in these ways is not fixed. Because relations and properties are scarce in our

dataset (see Table 4.9), we, again, take a zero-shot learning approach and train a

binary classifier to identify references to a property or relation (given as input) in a
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Table 4.4.: Features for our Entity Mention Identification Classifier

Num Feature

1 More than two sequential words from the chunk match the section header.
2 A word in the chunk is not compound and matches a section header that

is not a function word.
3 Either the entity is subsumed by the chunk, with any additional words

being function/jargon words, or the entity contains a word in parenthesis
and that word occurs in the chunk.

4 A single word header exactly matches a single word chunk
5 Entity exists in current section header and chunk contains a pronoun phrase

like “this field”, “they”, or “their”.
6 Entity is subsumed by the chunk and the next word in the chunk has a spe-

cific part-of-speech. We find only Coordinating Conjunctions, Determiners,
and Nouns to be useful.

7 Entity is subsumed by the chunk and the prior word in the chunk has a spe-
cific part-of-speech. We find only Coordinating Conjunctions, Determiners,
Adjectives, Nouns, and Pronouns to be useful.

8 Entity is a single word, the lemma of the entity appears in the chunk, and
the next word is one of:“list”,“field”,“area”,“space”.

9 Entity is a single word, the lemma of the entity appears in the chunk, and
the prior word is “all”.

given text. Additionally, we do not initially differentiate between different relations

or properties.

Based on an analysis of a wide variety of network protocols, we selected 9 prop-

erties and 6 relations to extract. The properties we consider include checksum,

which marks packet fields containing checksums; port, which marks packet fields

used for multiplexing different communication channels; and multiple, which indi-

cates that a field’s value is a multiple of some constant. Relations we consider include

significant, indicating that some field is only significant if another field has a spe-

cific value, and offset, indicating that some field encodes an offset from another field.

The full list of attributes and relations we consider is shown in Tables 4.5 and 4.6.

Note that unlike entity types, which vary between protocols, we look for the same

properties and relations in each protocol. We choose these properties and relations
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Table 4.5.: Properties

Name Description (A, B denote
entities)

Key phrases

sequence
number

A contains a sequence num-
ber

data octet, sequence number, ac-
knowledgment number

checksum A (field) is a checksum checksum
port A is used for multiplexing port
packet type A denotes different types of

packets
type, packet type, packet, control

header length A indicates length of packet
header

length, header, data offset, size

multiple A’s value is is scaled by a
constant

integral number

monotonically
increasing

A is monotonically increas-
ing

should not be lessened

mbz A is reserved and currently
unused

must be zero, reserved, zeros,
zero, zeroes, 0

range A’s values are in a limited
range

takes a value of, range

Table 4.6.: Relations

Name Description (A, B denote
entities)

Key phrases

offset A is an offset from B offset, indicated in
significant A is only significant if B has

a particular value
significant, only interpreted with, =,
valid

field present A is only present in pkt type
B

contain, carry, present, following for-
mat, following parameters, packets

contains A contains B from left to right, these parameters
greater A is always > B greater than
less A is always < B must not be greater, less
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Table 4.7.: Features for our Property/Relation Extraction Classifier

Num Feature

1 Maximum % of word overlap between a key phrase and the chunk
2 Maximum % of character overlap between a key phrase and the chunk
3 Longest common substring between a key phrase and the chunk
4 Overlap between a key phrase and the chunk (binary feature)
5 Key phrase is a substring of the chunk (binary feature)
6 Exact match between a key phrase and the chunk (binary feature)
7 Length of the chunk

because they are widely present across network protocols and contain information

that is useful for generating test cases. For example, knowing that a field represents

a checksum means that we should not spent a lot of time testing random values for

that field. Similarly, knowing that some field is only relevant if another field has a

particular value enables us to consider these fields together and not waste time testing

them separately.

We train a single binary SVM classifier for this problem. This classifier relies on a

small, focused, predefined set of key phrases associated with each of the 9 properties

and 6 relation types (see Tables 4.5 and 4.6). The features we consider are shown

in Table 4.7 and were extracted for a window of [-1, +1] chunks around the current

chunk.

This classifier identifies chunks of text that express a relation or property; however,

it does not determine which relation/property nor the identify of the arguments (i.e.,

the entity types involved in the relation or property). Identifying the type of a relation

or property is done simply by choosing the relation or property with the maximum key

phrase overlap. To determine the arguments of the relation or property, we use the

entity mentions identified in the previous stage and two heuristics. For properties,

we choose the entity type defined in the title of the section in which the property

appears. Since many properties refer to the entity type currently being discussed,

this makes sense. For relations, we choose the closest entity type to the left and the
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Property extraction:
Section Title: [(entity mention: Data Offset)Data Offset] : 8 bits
Section Text: The offset from the start of the packet ’s DCCP [(property keyword:
header length) header] to the start of its application data area , in 32-bit words . The
receiver must ignore packets whose Data Offset is smaller than the minimum-sized
header for the given Type or larger than the DCCP packet itself .
Property: Header Length, Data Offset

Relation Extraction:
Section Title: Urgent Pointer : 16 bits
Section Text: This field communicates the current value of [(entity mention: Urgent
Pointer) the urgent pointer] as a positive [(relation keyword: offset) offset] from
[(entity mention: Sequence Number) the sequence number] in this segment . The
urgent pointer points to the sequence number of the octet following the urgent data
. This field is only be interpreted in segments with the URG control bit set .
Relation: Urgent Pointer, offset, Sequence Number

Figure 4.7.: Examples of Property and Relation Extraction

closest entity type to the right of the relation as the arguments. Figure 4.7 shows an

example of the output of this classifier.

Post-processing

This process leverages domain knowledge about how entity types, properties, and

relations typically occur in network protocols. We discard any entity types with

unknown or variable lengths as well as any following entity types because fields with

unknown lengths prevent interpretation of later fields and variable length fields are

uncommon in the protocols we consider. We convert the remainder of the list of entity

types into a C-struct-style description of the protocol’s packet header. In order to do

this, a number of complex transformations are required because while packet fields

can conceptually be arbitrary length, C is constrained to working with single bytes

or multiples of 2, 4, or 8 bytes. Hence, fields that do not match these sizes, or are

not aligned, need to be transformed into one or more bitfields.
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We post-process the properties and relations by leveraging domain specific knowl-

edge. Since these properties and relations are being used to characterize the protocol,

we only need a single (property, entity) or (relation, entity, entity) tuple no matter

how many times this property or relation (i.e., tuple) appears in the document. This

benefits us significantly because we usually have multiple opportunities to extract

each property or relation tuple. In addition, many properties can occur only on a

single field in the packet header (e.g., packet type, header length) while other re-

lations or properties cannot occur in combination (e.g., packet type and sequence

number are mutually exclusive). Finally, if our pipeline was unable to identify key

properties like packet type, header length, and checksum, we attempt to guess

which fields have these properties based on field names and sizes. Finally, we asso-

ciate our cleaned properties and relations with the packet fields. This results in a

concise and clean protocol description.

4.5.3 Case Study: SNAKE

We demonstrate the usefulness and effectiveness of our automated protocol gram-

mar extraction framework by applying it to SNAKE, providing several benefits in-

cluding:

(1) Closing the gap between specification and testing. By automating the

generation of a protocol description, our approach closes the gap between specification

and vulnerability finding and eliminates the need for a protocol expert to manually

create a description of the protocol for testing purposes. Note that while our approach

requires some annotation for training, this is a one time cost; additional protocols can

be analyzed with no manual effort. The output produced by our pipeline was easily

integrated with SNAKE.

(2) Optimizing test cases. The properties and relations that our automated

document processing pipeline identifies enable us to optimize test case generation by

eliminating some irrelevant tests and providing better manipulation values in other
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Table 4.8.: Packet Field Modifications for Test Cases

Field Info Modifications

1 bit fields 0,1
2 bit fields 0,1,3
3 bit fields 0,2,3,7
4 bit fields 0,2,4,8,15,+1,-1
5 bit fields 0,2,4,8,16,9.31,+1,-1
6 bit fields 0,2,4,16,63,+1,-1
7 bit fields 0,3,4,8,19,64,127,+1,-1
8 bit fields 0,255,random
16 bit fields 0,65535,random
32 bit fields 0,4294967295,random
64 bit fields 0,16777216,random
port property 1025
checksum property random
mbz property random
sequence number prop +1,-1,+10,-10,+100,-100
monotonic increasing prop +1,+10,+100,+100
range property 4 locations within range
greater relation +1, +100, +1000, -1000
less relation -1, -100, -100, +1000
offset relation +1, -1, +1000, -1000

cases, with the goal of providing more meaningful test cases. For example, from the

definition of checksums and protocol ports, we expect that tampering with them will

result in modified packets simply being thrown away. Therefore, we apply only a single

modification—to confirm expected behavior—to fields identified as checksums or ports

(via the checksum or port properties). In a similar manner, mbz (must-be-zero) fields

are those with no current functionality, included for padding or extensibility purposes.

We apply only a single modification to fields identified as such because we expect these

fields to be irrelevant to protocol operation. In other cases, like sequence number or

monotonically increasing fields, we optimize the set of operations we perform. In

both cases, adding or subtracting from the current field value is likely to be much more

interesting than setting an absolute value, since the absolute values may vary widely

between or during tests. The full set of improvements we make to field modifications
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Table 4.9.: Dataset Statistics

Statistic Value

Documents 7
Entity Types 128
Entity Mentions 516
Properties 88
Relations 49

are shown in Table 4.8. This allows us to generate fewer strategies than SNAKE did

previously, by pruning uninteresting strategies, while testing a similar amount of the

protocol.

(3) Reducing false positives. The properties provided by our NLP pipeline

enable us to identify and filter test cases that are expected to fail based on the

properties associated with modified fields, reducing the test cases that need to be

manually triaged. Examples include header length or checksum fields which contain

fundamental details about packets. When these fields are modified, we expect that

the resulting packets will to fail to parse.

4.5.4 Evaluation

In this section, we evaluate our document processing pipeline to understand how

effective it is at extracting entity types and properties from textual specification

documents and how effectively that information can be leveraged to find attacks

against protocol implementations.

Dataset. To train the classifiers for our pipeline, as well as develop the rule-

based entity type extractor, we annotated a set of training protocol specification

documents in the form of RFCs. RFCs are public documents available from the

IETF at [92]. They are a common form for protocol specification and are written

in plain text following a specific format [81, 90, 91]. We use RFC documents for

seven protocols: GRE [59], IPv6 [60], IP [61], TCP [34], UDP [31], DCCP [45], and
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SCTP [62]. We selected these RFCs because they specify common transport and

network layer protocols, meaning that we expect their designs to have similarities.

Additional details about the dataset are shown in Table 4.9.

NLP Pipeline Evaluation

We evaluate our NLP pipeline by examining each of its three stages: extracting the

entity types for each protocol, identifying entity mentions, and extracting properties

and relations. We compare our use of specialized features and classifiers with simpler

approaches based on keyword overlap to understand the additional value added by

our approach. We use standard K-way cross validation, where we train on K − 1

documents and test on the last. Our results are shown in Table 4.10.

Entity Types Extraction. Results for this stage are shown in Table 4.10a. We

find that our rule-based extractor is quite effective in most cases, obtaining an average

precision of 0.75, recall of 0.72, and F1-score of 0.74.2

We note that this rule-based method fails completely for two protocols, UDP and

GRE. Both UDP and GRE depart significantly from the normal method for entity

type description. Specifically, entity types are described either in paragraph form

(UDP) or in numbered headings (GRE), which causes our rule-based system to in-

correctly ignore them as not relevant. These kinds of departures from the normal

method of description pose significant difficulties for any extraction technique. For-

tunately, for all other protocols, our extractor does quite well. This is crucial because

errors here have cascading effects down the rest of the pipeline in entity mention

identification and property/relation extraction. We are currently looking at machine

learning based methods to improve the performance of entity extraction.

Entity Mention Identification. Results for this stage are shown in Table 4.10b.

Since identifying entity mentions requires the protocol’s entity types, we consider how

well this stage performs using both the set of entity types from our annotations and

2Recall is the fraction of true instances identified while precision is the fraction of predicted instances
that are correct. F1-score is the harmonic mean of recall and precision.
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Table 4.10.: NLP Document Processing Pipeline Evaluation

(a) Entity Types Extraction

Protocol Precision Recall F1 Instances

UDP 0 0 0 4
TCP 0.86 0.67 0.75 18
SCTP 0.73 0.78 0.73 40
IPv6 0.82 0.90 0.86 20
IP 0.65 0.64 0.65 22
GRE 0 0 0 6
DCCP 0.94 0.94 0.94 18
Total 0.75 0.72 0.74 128

(b) Entity Mention Identification

Protocol Pipeline Entity Types Annotated Entity Types Instances
Precision Recall F1 Precision Recall F1

UDP 0 0 0 0.33 0.14 0.20 7
TCP 0.92 0.59 0.72 0.97 0.71 0.82 41
SCTP 0.57 0.36 0.44 0.69 0.43 0.53 240
IPv6 0.81 0.75 0.78 0.94 0.89 0.92 73
IP 0.93 0.56 0.69 0.82 0.60 0.69 45
GRE 0 0 0 1.0 0.81 0.89 21
DCCP 0.91 0.55 0.69 0.87 0.81 0.84 89
Total 0.73 0.46 0.57 0.82 0.61 0.70 516

(c) Property Extraction

Protocol Found Linked Linked FP Rate Instances
(Pipeline
Mentions)

(Annotated
Mentions)

UDP 1.00 0.0 0.80 0.32 5
TCP 0.92 0.75 0.83 0.33 12
SCTP 0.87 0.55 0.58 0.21 38
IPv6 0.90 0.90 0.90 0.44 10
IP 0.88 0.75 0.88 0.24 8
GRE 1.00 0.0 1.00 0.36 4
DCCP 1.00 0.92 1.00 0.34 11
Total 0.91 0.66 0.76 0.29 88



77

Table 4.11.: Entity Mention Identification Baselines

Approach Precision Recall F1 Correct Refs FP Refs

Overlap ≥ 50% 0.18 0.75 0.29 387 1800
Overlap ≥ 70% 0.36 0.66 0.47 341 609
Overlap ≥ 85% 0.55 0.59 0.57 303 248
Overlap ≥ 100% 0.69 0.49 0.57 252 115
RB1 0.74 0.19 0.30 95 34
RB2 0.69 0.52 0.59 264 116
Our Approach 0.82 0.61 0.70 315 201

our extracted entity types from the prior stage. We find that this stage performs quite

well, with an overall F1-score of 0.70 when using the annotation entity types. Since the

overwhelming majority of chunks are negative instances (i.e., do not contain an entity

mention), we tune the classifier to strongly penalize false positives, preferring precision

to recall. With our extracted entity types, we observe a decrease in performance across

the board, mostly in recall due to missing entity types. Overall F1-score drops to

0.57; however, this is largely due to UDP and GRE where the prior stage failed to

find any entity types. Many of the other protocols have F1-scores around 0.70.

We compare our classifier to six simpler baseline approaches in Table 4.11. The

first four baselines are simple string matching systems. Here, we measure the overlap

between an entity type and the current chunk and classify a chunk as a mention if the

overlap is at or above a certain percentage P . The trade-off in these systems is clear,

the higher P , the higher the precision and the lower the recall. As we reduce P , recall

increases and precision suffers. Best results are obtained using a threshold of between

85% and 100%. None of these systems perform nearly as well as our approach, with

the F1-score topping out at 0.57, compared to 0.70 using our approach. Precision is

especially problematic, topping out at 0.69 compared to 0.82 with our approach.

The last two baselines are simple rule-based systems. Here we take the same set of

features used by our classifier and weigh them manually. In baseline RB1, we weight

each feature by its frequency of occurrence. In other words, for each feature fj we
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calculate prj and nrj. We then give each feature fj a weight of +prj if prj > nrj,

a weight of −nrj if nrj > prj, and a weight of 0 if prj = nrj. We use a weight of

−nrj for the bias term. In the second baseline RB2, we weight each feature with +1

if it occurs more often in positive examples and −1 if it occurs more often in negative

examples. In other words, we give each feature fj a weight of +1 if prj > nrj and a

weight of −1 if nrj > prj and a weight of 0 if prj = nrj. We use a weight of −1 for

the bias term. While RB2 performs better than string matching, it stills performs

worse than our classifier. In short, we see value from both our carefully crafted set of

features and our use of an SVM classifier.

Property and Relation Extraction. Results for this stage are shown in Ta-

ble 4.10c. Our classifier does quite well at identifying properties, finding 91% of the

properties on average with a 29% false positive rate.3 Note that for this task we

are more concerned with recall, finding all possible properties, than with precision

because our post-processing step is able to eliminate many incorrect properties by

leveraging domain-specific knowledge. As a result, incorrect properties are much eas-

ier to handle than missing ones. The prior stage made the opposite trade off because

it is much less likely that a chunk is a mention than that it is not.

Once we have found a property, we need to link it with the relevant entity type.

This is a much harder problem and depends on the entity mentions we identified in the

previous stage, which depend on the entity types from the stage before. Because of

this, we consider the performance of property linking both with entity mentions from

annotation and with the entity mentions identified in the prior stage. We observe

a success rate of 76% with the annotation entity mentions, with many protocols

significantly above that. This drops to 66% when using identified entity mentions

from the prior stage. Again, this is partly due to issues with extracting entity types

from UDP and GRE in the entity types extraction stage.

To understand how effective our classifier-based property extraction approach is,

we compare with six simpler baseline approaches in Table 4.12. The first four baselines

3This corresponds to a recall of 0.91 and a precision of 0.71. Our Found/Linked columns are
equivalent to recall while the FP Rate columns are 1− precision.
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Table 4.12.: Property Extraction Baselines

Approach Found FP Rate

Overlap ≥ 50% 0.90 0.44
Overlap ≥ 70% 0.77 0.16
Overlap ≥ 85% 0.72 0.13
Overlap ≥ 100% 0.72 0.13
RB1 0.91 0.79
RB2 0.94 0.79
Our Approach 0.91 0.29

are simple string matching systems. Here, we measure the overlap between property

key phrases and the current chunk and classify a chunk as a property if the overlap

is at or above a certain percentage P . These systems tend to have a high success

rate and low false positive rate, which is good. However, all perform worse than

our approach, with success rates topping out at 77%, compared to 91% with our

approach. In the case of 50% overlap, even though we are able to find 90% of the

properties, the false positive rate is considerably higher.

The last two baselines are the same rule-based systems we considered for entity

mention identification. They take the same set of features used by our classifier and

weigh them manually. In baseline RB1 we weight each feature by its frequency of

occurrence while in RB2 we weight each feature with +1 if it occurs more often in

positive examples and −1 if it occurs more often in negative examples. While these

systems do better than string matching and have an equivalent or slightly higher

success rate compared to our classifier, the false positive rate is 79%, high enough

to be extremely problematic. In short, we see benefits from using both our carefully

crafted set of features and our SVM classifier, especially when it comes to avoiding

false positives.

For relations, our classifier is able to identify 80% of them with a 31% false positive

rate, as shown in Table 4.13. Interestingly, in many protocols the success rate is 100%,

but the performance on the two protocols with the most relations, TCP and SCTP,
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Table 4.13.: Relation Extraction Evaluation

Protocol Relations
Found FP Rate Instances

UDP 0 0.41 0
TCP 0.67 0.35 6
SCTP 0.71 0.23 28
IPv6 1.00 0.45 3
IP 1.00 0.24 2
GRE 1.00 0.37 4
DCCP 1.00 0.35 6
Total 0.80 0.31 49

is much lower. This is likely due to an uneven distribution of different types of

relations in our documents, with SCTP having the vast majority of field present

relations and TCP having the vast majority of significant relations. Given that

we only have 49 relations in the entire training set, there are not enough relations

in the remaining data to fully train the classifier. For our fuzzing case study with

TCP, we find that the vast majority of improvements comes from properties, with

even annotated relations providing no significant improvements. Therefore, we do

not consider relations further here.

Summary. Overall, we have seen that our document processing pipeline is effec-

tive at extracting entity types, entity mentions, and properties from natural language

specification documents. We find that our entity types extraction achieves an impres-

sive F1-score of 0.74 despite poor performance on UDP and GRE. Our entity mention

identification achieves an F1-score of 0.70 while our property and relation extraction

identifies 91% of all properties in the document and links 76% of them.

Fuzzer Evaluation

We now evaluate how effectively the entity types and properties extracted by our

NLP pipeline can be used to test real protocol implementations for attacks. We
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seek to understand: (1) How much benefit does a protocol grammar description,

either automatically extracted or manually created, provide over just blindly fuzzing

the protocol? and (2) How effective is testing based on our automatically extracted

protocol grammar compared to testing that uses manually defined descriptions?

Fuzzer configurations. We use SNAKE and concentrate on a single protocol,

TCP [34], and a single implementation, Linux 3.0.0 in Ubuntu 11.10. We compare

three different testing configurations: Random, Manual, and NLP-based.

Random. This is the simplest baseline and uses SNAKE configured with no in-

formation about the protocol grammar. It generates tests that randomly replace a

random number of the first 20 bytes of packets with random data. We only modify

the first 20 bytes to approximate the length of a typical transport protocol header.

Note that in any given test the same bytes in all packets are modified. Attack in-

jection is on every packet sent. We generate 1,000 test strategies in this manner to

compare with our other testing configurations.

Manual. This configuration uses SNAKE with a manually created protocol gram-

mar as discussed earlier in Section 4.2. Note that we do not use the connection-level

state machine in this testing, to better compare with our NLP-based configuration

that also lacks a state machine. For each packet type, test strategies are created to

inject new messages, modify all packet fields, and apply all delivery actions to those

packets. For modifying packet fields, tests modify fields based on their size. During

each test, all packets of a particular type are modified, and attack injection is on

every packet.

NLP-based. This configuration uses SNAKE but configured with our automati-

cally extracted protocol grammar, derived from extracted entity types and properties.

This configuration generates a similar set of tests that injects new packets, modifies

the delivery of packets, or overwrites a single field in packets during each test. During

each test, all packets of a particular type are modified, and attack injection is on ev-

ery packet. For each packet type, test strategies are created to inject new messages,

modify all packet fields, and apply all delivery actions to those packets. This configu-
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ration has more information about packet fields available to it, thanks to our pipeline.

We leverage this information to apply better field modifications, as discussed in Sec-

tion 4.5.3. For example, from the definition of checksums and protocol ports, we

expect that tampering with them will result in modified packets simply being thrown

away. Thus, we apply only a single modification—to confirm expected behavior—to

fields that are identified as checksums or ports (via the checksum or port properties).

We anticipate this resulting in similarly effective testing with a reduced number of

strategies.

Metrics. We use the number of test strategies generated to measure the amount

of effort required to test an implementation. We measure coverage as the number of

unique packet type traces observed. A packet type trace records the order in which

different types of packets are observed in a TCP flow. Thus, a packet type trace

succinctly summarizes a protocol connection and approximates the path traversed

through the code. To effectively test a protocol, as many distinct connections, or

code paths, as possible should be explored, hence unique packet type traces.4 Ideally,

we want to expend a small amount of effort while achieving high coverage.

The number of attacks identified indicates how many test strategies were reported

by the testing configuration as attacks. Unfortunately, many of these attacks are

on-path attacks which are not interesting since TCP does not attempt to provide

protection against these attacks. Removing these on-path attacks leaves us with

the interesting endpoint or blind attacks, which we refer to as interesting attacks.

Note that many strategies may exercise the same underlying root vulnerability, so we

perform a manual analysis of all reported attack strategies to identify the number of

unique attacks actually identified.

The results from running all three of our testing configurations can be found in

Tables 4.14, 4.15, and 4.16.

Random Testing vs Grammar-based Fuzzing. Table 4.14 compares cov-

erage, in terms of unique packet type traces, achieved by all three configurations.

4Note that we record packets prior to any possible modification to avoid counting traces where the
only different packet is one that was intentionally modified.
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Table 4.14.: Coverage Evaluation

Unique Packet Type Traces Total Strategies

Random 13 1000
Manual 784 901
NLP-based 713 819

Table 4.15.: Attack Discovery Results

Reported Attacks Interesting Attacks Unique Attacks

Random 996 0 0
Manual 219 63 5
NLP-based 220 69 5

Table 4.16.: Attacks Discovered

Attack Man NLP

CLOSE WAIT Exhaustion X X
Reset Attack [13] X X
SYN-Reset Attack [3] X X
FIN-injection Attack [3] X X
Packets with Invalid Flags X X

We observe that the manual and NLP-based configurations achieve similar coverage,

around 700 unique traces, while random achieves only 13 traces. To achieve this

coverage, all three configurations required about 1,000 strategies. Since the number

of strategies is directly equivalent to the amount of effort required for testing, we can

say that random fuzzing is significantly less efficient than grammar-based fuzzing.

This occurs primarily because in the random test configuration all packet manip-

ulation strategies stall the connection. This is because modifying the packet corrupts

the TCP checksum, resulting in the packet being thrown away at the receiver. In

order to correct this, the fuzzer would need to know the exact location of the check-

sum in the packet, which is exactly the information provided by a protocol grammar.
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Similarly, all packet delivery strategies in the random test configuration stall the con-

nection because they drop or delay key packets like the TCP SYN. In order to work

around this, the fuzzer would need to know the type of each packet, which is also

supplied by a protocol grammar. All of these connection stalls generate similar traces

and traverse similar code paths, resulting in very poor coverage.

In addition to very poor coverage, Table 4.15 indicates that the random test

configuration also generates a lot of reported attacks, but none of them are interesting.

This is because each of the connection stalls mentioned above is reported as an attack

on availability. Unfortunately, these are on-path attacks and so are not relevant for

TCP.

NLP-based vs Manual Configurations. We first consider testing coverage,

shown in Table 4.14, and confirm that, thanks to the additional properties provided

by our document processing pipeline, the NLP-based configuration generates fewer

strategies than the manual configuration. This results in a reduction in the amount

of time and effort required for testing. This does result in slightly lower coverage, but

only by about 70 traces.

We also consider the attacks that are reported by both testing configurations,

shown in Table 4.15. We find that our NLP-based testing system reports one more

attack than our manual testing system and that more of those it reports are inter-

esting. Further, we find that both our manual configuration and our NLP-based

configuration discover the same set of five attacks, as confirmed by Table 4.16. None

of these attacks are new, although one was initially discovered by SNAKE (see Sec-

tion 4.4). However, they all have serious impacts on TCP connections, ranging from

denial of service to server fingerprinting [3, 13].

Summary. Overall, we find that grammar-based fuzzing, like SNAKE, provides

significant benefits in terms of efficiency and ability to find attacks and that our

automatically generated protocol grammars are as effective in identifying attacks as

manually created grammars while enabling improved efficiency. In addition, our NLP

document processing pipeline enables completely automated testing.
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4.6 Summary

Transport layer networking protocols form an important part of the Internet, yet,

to date, their testing has been mostly manual and ad-hoc. This has resulted in a

stream of vulnerabilities stretching back to the 1980’s. To help remedy this situa-

tion, we present SNAKE, a tool to allow systematic testing of unmodified transport

protocol implementations, utilizing the protocol’s connection state machine to reduce

the search space. We demonstrate SNAKE by testing 2 different protocols, TCP

and DCCP, and 5 implementations, including both open-source and closed-source

systems. We found 9 classes of attacks, 5 of which we believe to be unknown in the

literature. To do this testing, SNAKE requires a description of each protocol and its

connection-level state machine.

We then design and build an NLP pipeline to extract these protocol descriptions,

or grammars, from natural language specification documents automatically. Our NLP

pipeline extracts protocol entity types—or packet fields—, properties, and relations

from natural language network protocol RFCs using a zero-shot learning approach.

We evaluate our ability to extract protocol grammars on a corpus of 7 protocol spec-

ification documents and achieve an F1-score of 0.74 for extracting entity types and

a success rate of 76% at finding and linking properties. We further demonstrate the

value of our approach by applying it to SNAKE and comparing it to using a manual

grammar. We find a reduction in the testing effort (from 901 to 819 test cases) while

identifying the same set of attacks and doing so in a fully automated manner. We

believe that SNAKE and our NLP pipeline can contribute to securing the transport

layer of modern network stacks.
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5 AUTOMATED ATTACK DISCOVERY FOR TCP CONGESTION CONTROL

In the previous chapter, we introduced SNAKE, a system to automatically find per-

formance and availability attacks on transport protocols. While SNAKE allows us to

find many attacks on transport protocols, it has important limitations. In particular,

the techniques that SNAKE uses to broadly find a huge range of attacks on a variety

of transport protocols are ineffective for finding complex and highly dynamic attacks

on complicated guarantees like congestion control that may operate very differently

between protocols. In this chapter, we investigate how to automatically find attacks

on one of these more complicated guarantees, congestion control, for a particular

transport protocol, TCP.

5.1 Introduction

TCP is the protocol that underlies most of the Internet traffic including encrypted

traffic via TLS and HTTPS. In addition to reliable and in-order data delivery, TCP

has two critical goals – efficient delivery based on network conditions and fairness with

respect to other TCP flows in the network. These two goals are achieved by using

congestion control mechanisms that cause a sender to adapt its sending rate to the

current network conditions (e.g., network congestion) or to the receiver’s processing

resources (e.g., a slow receiver). Without congestion control, the network can enter a

condition where the majority of sent data is eventually dropped, known as congestion

collapse; such a collapse occurred on the Internet in 1986, causing throughput to drop

by a factor of a thousand [93].

TCP congestion control relies on acknowledgement packets from the receiver to

explicitly provide the sender with correct information about the number of data bytes

received (and implicitly about the real network conditions). However, TCP does not
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have any cryptographic mechanisms to ensure authentication and integrity of sent

packets, including acknowledgments. Application-layer secure protocols such as TLS

provide no protection for TCP headers or TCP control messages, and network-layer

secure protocols such as IPsec [94] require separate infrastructure and protect only

up to the tunnel termination point. Thus, an attacker that can intercept acknowledg-

ment packets can modify them without being detected by the intended recipient, who

will blindly trust the information they provide. TCP has a protection mechanism

against packet injection in the form of a sequence number included on each packet.

However, numerous attacks demonstrate that this protection mechanism can be by-

passed by blind attackers performing TCP sequence guessing [95–98] or by off-path

or on-path attackers that can observe the target stream. Thus, an attacker can also

inject well-crafted acknowledgment packets into a TCP stream without detection. By

creating such crafted acknowledgments that propagate malicious information about

the data received, an attacker can manipulate TCP congestion control into sending

data at rates that benefit the attacker. For example, by creating an acknowledgement

that acknowledges data packets prior to receiving them and injecting it into a target

stream, an adversarial TCP receiver can persuade the sender to increase its sending

rate beyond the rate prescribed by correct congestion control, possibly forcing the

network into congestion collapse [11].

Several manipulation attacks against TCP congestion control have been discov-

ered; some of these attacks use external data flows to create the impression of conges-

tion [8,9] and others use acknowledgement packets to directly mislead the congestion

control mechanisms [3, 11, 99, 100]. These attacks are more subtle and difficult to

detect than traditional crash or control-hijacking attacks. Acknowledgement-based

attacks, in particular, do not raise suspicions as long as the packets are consistent with

the receiver’s state (unlike data that might not assemble properly at the application

level). We focus on attacks against congestion control created through maliciously
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crafted acknowledgement packets (by fabrication of new ones or modification of ex-

isting ones) and refer to them as manipulation attacks.1

Previous work on attacks against TCP congestion control relied mainly on manual

analysis. The only work we are aware of that used automation for finding attacks in

TCP congestion control implementations is the work in [5] which relies on the user to

provide a vulnerable line of code and then performs static analysis. The vulnerable

line of code from the user is critical to ensure the scalability of the approach. In addi-

tion, the method is restricted to a specific implementation, language, and operating

system.

In this chapter, we aim to automatically discover manipulation attacks on con-

gestion control without requiring the user to provide any vulnerable line of code and

without being dependent on specific implementation, language, or operating system

characteristics. Protocol fuzzing [6, 15, 101] is a well-known approach where packet

contents are either randomly generated and injected into the network or randomly

mutated in-transit. However, without explicit guidance, given a vast input space,

fuzzing fails to concentrate on relevant portions of the source code (i.e., for inducing

protocol-compliant behaviors).

Our previous work on testing transport protocols, SNAKE (see Chapter 4), used

the protocol’s connection state machine to guide the fuzzing process and prune unnec-

essary executions. However, unlike the attacks SNAKE finds, which usually consist

of one action, attacks against congestion control require a potentially long sequence

of actions spanning several states and transitions, where each action might trigger

a new state, which in turn might require a different attack action. Automatically

discovering these combinations at runtime is not practical for scalability reasons. For

example, using SNAKE’s approach for congestion control would require a search space

of about 1.2× 1024 cases, assuming only 5 types with 4 parameter choices for creat-

ing the malicious acknowledgements and 4 possible states for injecting them. Even

1Note that attackers can also create the impression of network congestion without manipulating the
acknowledgement packets but by using external data flows [8, 9]. We consider such attacks out of
scope for this chapter.
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limiting this to test at most one manipulation at a time in each state would generate

194,480 cases, which is still impractical for testing in a real network.

To address this scalability challenge while still guaranteeing that we test relevant

portions of the code, we use model-based testing (MBT) [102], an approach that

generates effective test cases based on a model of the program. The approach uses

a model, an abstract representation of the desired behavior of the program that is

typically derived from specifications, to derive functional tests. These functional tests

contain the same level of abstraction as the model, and are converted to concrete test

cases to be tested against the implementation. MBT does not require the source code

and guides the testing to concentrate only on relevant portions of the source code.

Our approach. We propose to automatically find manipulation attacks by guid-

ing a protocol fuzzer with concrete attack actions derived from abstract attack strate-

gies, which are obtained using a model-guided technique inspired by model-based test-

ing. Our model is a finite state machine (FSM) that captures the main functionality of

several types of congestion control algorithms used by deployed TCP implementations

and is constructed from RFC specifications. We use this abstract model to gener-

ate abstract attack strategies by exploring the different paths in the FSM that modify

state variables controlling throughput, and thus can be leveraged to mount an attack.

We then map these abstract strategies to concrete attack strategies that correspond

to real attacker capabilities; a concrete strategy consists of acknowledgment-packet-

level actions with precise information about how the packets should be crafted and the

congestion control states in which these actions should be performed. Our approach

provides maximum coverage of the model of congestion control while generating an

optimum number of abstract strategies. The number of concrete attack strategies is

bounded by the number of malicious actions that describe an attacker’s capabilities.

We consider off-path attackers and on-path attackers; both can sniff traffic and ob-

tain TCP sequence numbers and data that has been acknowledged or sent. However,

there is one fundamental difference, an off-path attacker can only inject malicious

acknowledgements, but cannot prevent the correct ones from reaching the receiver;
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an on-path attacker can modify acknowledgements such that the victim sees only

acknowledgments from the attacker.

We created and implemented a platform, TCPwn, to create and inject concrete

attack scenarios. The platform combines virtualization (to run different implemen-

tations in their native environment), proxy-based attack injection, and runtime con-

gestion control state machine tracking (to inject the attacks at the right time during

execution). Our state machine tracking at runtime does not require instrumenting the

code. Specifically, we use a general congestion control state machine (e.g., TCP New

Reno) and infer the current state of the sender by monitoring the network packets

exchanged during fuzzing. While this option is less accurate than extracting the state

machine from an implementation’s code, it is less complex and more general.

Our model-based attack generation finds 21 abstract strategies that are mapped

into 564 (for on-path attackers) and 753 (for off-path attackers) concrete strategies.

Each strategy can be tested independently and takes between 15 and 60 seconds. We

evaluated 5 TCP implementations from 4 Linux distributions and Windows 8.1, all

using congestion control mechanisms that can be modeled as the finite state machine

we used to generate abstract strategies. Overall, we found 11 classes of attacks, of

which 8 were previously unknown.

The rest of the chapter is organized as follows. We describe our attacker model

in Section 5.2. We provide details on the design of our system in Section 5.3 and

describe our implementation in Section 5.4. We present our results in Section 5.5 and

then summarize this chapter in Section 5.6.

5.2 TCPwn Attack Model

In this section we discuss the attacker capabilities and congestion control attacks

that we consider in this chapter.
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5.2.1 Attacker and Attack Goals

A typical attacker might be a botnet trying to enhance the power of a DDoS attack

by using increased throughput attacks to render TCP flows insensitive to congestion.

This gives the attacker the power of a UDP flood with the ubiquity of TCP traffic;

perfect for the coremelt attack [103]. Alternately, a nation-state actor could launch

decreasing throughput attacks to discourage or prevent use of certain undesirable

services.

Decreasing Throughput. In this case, the attacker manipulates the congestion

control algorithm of a target connection such that it falsely detects congestion, re-

sulting in a rate reduction. This rate reduction can have significant impact at the

application level, especially for inelastic data streams like streaming video.

Example. Consider the Blind Throughput Reduction Attack [3]. In this attack, the

attacker sends spoofed invalid acknowledgements to the target connection’s receiver,

which cause the receiver to send duplicate acknowledgements to the sender. These

duplicate acknowledgements, when received in the Congestion Avoidance or Slow

Start states, mislead the sender about the existence of lost packets and the level of

congestion in the network, causing the sender to transition to the Fast Recovery state

and slow down (see Figure 5.1). The sender will continue to slow down as long as the

attacker emits its spoofed acknowledgements.

Increasing Throughput. In this case, the attacker manipulates the congestion

control algorithm such that it perceives significant available bandwidth along with

low latency and loss. As a result, the sender rapidly increases its sending rate beyond

what is fair to competing connections. Any actual congestion in the network will not

be observed, which may be used to damage or deny service to target links or to other

connections sharing the same links.

Example. Consider the Optimstic Ack Attack [11]. In this attack, the receiver

repeatedly sends acknowledgements for data that has not actually been received yet

in order to dramatically increase its sending rate and render the sender insensitive
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to actual congestion in the network. Acknowledging data not yet received in the

Congestion Avoidance, Slow Start, or Fast Recovery states misleads the sender about

the data that has been received and the RTT of the connection. As a result, the sender

does not react to actual congestion in the network and is unfair to any competing

connections.

Target Flows. Any TCP flow that sends more than an initial window (10 packets,

about 15KB) of data is vulnerable to these attacks. We focus on bulk data transfers

because they result in the widest array of attacks, are easiest to automate, and easiest

to explain; however, these attacks are not restricted to such flows. Short transfers,

like web pages, are also vulnerable to attacks on congestion control, and flows with a

limited bitrate, like streaming video, are vulnerable to decreasing throughput attacks.

Interactive flows are vulnerable if their sending rate is limited by congestion control

and not by the availability of data from the application.

5.2.2 Attack, Strategy, Action

Congestion control constrains the sender’s data-transfer rate, primarily through

acknowledgements. Thus, we consider attacks conducted through acknowledgement

packets.

Congestion control manipulation attacks. These are attacks conducted by ma-

nipulation of TCP acknowledgements in order to mislead congestion control about

current network conditions and cause it to set an incorrect sending rate. They can

result in either increasing or decreasing the throughput, and sometimes in connection

stall. In order to achieve the high-level goals of manipulating congestion control, an

attacker applies an attack strategy.

Attack strategy. Given a TCP stream, where a sender sends data to a receiver,

we define a concrete attack strategy as a sequence of acknowledgment-based mali-

cious actions and the corresponding sender states (as described in Figure 2.3 and

Section 2.1.1) where each action is performed.
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Malicious actions. A malicious action itself requires an attacker to (1) craft ac-

knowledgements by leveraging protocol semantics to mislead congestion control, (2)

infer the state at the sender, and (3) inject the malicious acknowledgment on the

path and in the target stream. For example, a malicious action can be to craft an ac-

knowledgment that acknowledges data not yet received and inject it when the sender

is assumed to be in Congestion Avoidance.

Crafting malicious acknowledgements. TCP does not use any cryptographic mech-

anisms to ensure authentication and integrity of packets; thus, an attacker can fab-

ricate packets or modify intercepted ones to have a malicious payload. In order to

intercept, the attacker will need to be on the path. Moreover, these crafted acknowl-

edgements are semantic-aware, that is, the attacker is aware of the meaning of the

bytes acknowledged. For example, in the example above, an attacker will need to

know the highest byte of data that was acknowledged in order to acknowledge data

that has not been received yet.

Inferring the state machine at the sender. We assume that the attacker can observe

the network traffic but does not have access to implementation source code and thus

cannot instrument the implementation.

Injecting malicious acknowledgments. This requires an attacker to spoof packets

and have knowledge of the TCP sequence number, the only protection TCP has

against injection. We do not consider blind attackers here, since, while they can

inject spoofed packets into the network, they have no knowledge of sequence numbers

or data being acknowledged and thus are restricted to guessing this information. We

distinguish between off-path and on-path attackers. An off-path attacker can observe

packets in the target connection or link and inject spoofed packets. For example he

can sniff traffic on the client’s local network — e.g., coffee house Wi-Fi. An on-path

attacker can intercept, modify, and control delivery of legitimate packets in some

target connection or link, as well as inject new spoofed packets. For example, such

an attacker can be a switch on the path between client and server.
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Figure 5.1.: New Reno congestion control and the Optimistic Ack attack. Transitions
in blue increase throughput while those in red decrease throughput.

5.3 Design

In this section we describe the design of TCPwn, our automated platform for

finding attacks on congestion control. We first provide a high-level overview, then

discuss our model-guided attack strategy generation and congestion control protocol

state tracking.

5.3.1 Overview

We motivate our approach with the Optimistic Ack Attack [11]. Consider its

interactions with the congestion control state machine as shown in Figure 5.1. In order

to be successful, the attacker must inject packets with an acknowledgement number

above the real cumulative acknowledgment number and below the highest sequence

number that the sender has sent, and it has to do this in either the Congestion

Avoidance, Slow Start, or Fast Recovery states. Each time the sender receives one of

these new acknowledgements in those states, it causes a self-loop transition (in blue

in Figure 5.1), increasing the congestion window cwnd, which directly controls the

sending rate.
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Finding all these transitions (i.e., that impact the sending rate at runtime) is

challenging because of the large search space. We address this challenge by using a

model-based attack strategy generation algorithm that finds all possible attack strate-

gies in a model of congestion control (shown in Figure 2.3). We refer to these as

abstract strategies. To test them in real implementations, we translate them to con-

crete attack strategies, obtained by mapping the abstract strategies to attack actions

corresponding to attacker capabilities and consisting of specific content for a mali-

cious packet and the state in which it will be injected. An attack injector takes these

concrete packet-based attack strategies and injects them in our testing environment

during an actual execution of the target implementation. Our attack injector requires

information about the current congestion control state of the sender. A state tracker

determines this current protocol state so that actions can be performed as specified

by the strategy. After the execution of each attack, our system collects logs that

capture performance metric(s). By comparing the resulting performance with the

expected baseline performance, TCPwn identifies whether the strategy indeed leads

to a successful attack. Figure 5.2 shows the conceptual design of our system.

Testing strategies with real implementations provides strong soundness properties

since any strategy that TCPwn identifies as an attack caused noticeable performance

changes in a real TCP connection of the implementation under test. This prevents

most classes of false positives, except tests with performance outside of the considered

normal range (> 2 standard deviations from average). Our completeness is limited
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by the accuracy of the congestion control model and state tracking. Here, we choose

to trade off some completeness for the ability to test many implementations and use

a generalized congestion control model and inferred state tracking.

Example for TCPwn attack generation. We demonstrate this attack strategy

generation approach using the same Optimistic Ack Attack example as above, where

the attacker’s goal is to increase the sending rate; this can also be expressed as an

increase in the sender’s cwnd variable. Our abstract strategy generator identifies each

of the paths in the FSM (Figure 2.3) containing at least one transition that increments

the cwnd variable. One of the identified paths (say, P) looks as follows:

P : SlowStart → FastRecovery → CongestionAvoidance �

where the self-loop in CongestionAvoidance increments cwnd (see Figure 2.3). An

abstract strategy S is a projection on the condition of each transition along P and is

represented as the following sequence of (state, condition) pairs:

(In: SlowStart, Condition: ACK && Dup && dupACKctr≥3)

(In: FastRecovery, Condition: ACK && New && pkt.ack ≥ high water)

(In: CongestionAvoidance, Condition: ACK && New)+

This strategy S dictates that when the sender is in SlowStart and is sending data to

the receiver, the attacker can send 3 duplicate ACKs to the sender so that it moves to

FastRecovery. Next the attacker can send the sender 1 new ACK (that acknowledges

all the outstanding data). As a result, the sender moves to CongestionAvoidance,

and the attacker can keep on sending new ACKs that optimistically acknowledge all

outstanding data even if the receiver has not received it yet. + (the superscript)

signifies that the attacker can apply this segment of S repeatedly.

TCPwn maps S to several concrete strategies that can be directly tested inside

the testing environment running the given implementation. TCPwn relies on a map

which associates the abstract network conditions to concrete basic actions. For S,

TCPwn generates 72 concrete strategies, based on actions mimicking both off-path

and on-path attackers. One such concrete strategy is:
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(In: SlowStart, Action: 3 × Inject Dup-Ack)

(In: FastRecovery, Action: Inject Pre-Ack)

(In: CongestionAvoidance, Action: Inject Pre-Ack)+

This concrete strategy dictates that when the sender is in SlowStart, the attacker

can use the Dup-Ack basic action to inject 3 duplicate ACKs. Similarly, for acknowl-

edging all the outstanding data in the next step, the attacker can use the Pre-Ack

basic action. Once the sender is in CongestionAvoidance, the attacker can repeatedly

apply Pre-Ack. We will describe all supported basic actions in Section 5.3.3.

5.3.2 Abstract Strategy Generation

We now describe in detail the core of our approach. We observe that a successful

attack will (1) trigger a transition that causes an increase or decrease in the congestion

window cwnd and (2) traverses a cycle in the congestion control state machine.

Changes to cwnd. The congestion window, cwnd, adjusts the sending rate of

TCP to avoid congestion collapse and provide fairness.2 This variable controls the

amount of data allowed in the network at any given time, which directly corresponds

to TCP’s allowed sending rate. As a result, any attack on congestion control will

have to impact this variable to have any impact on the network traffic. There may

be attacks on TCP that do not manipulate this variable, but these are not attacks

on TCP’s congestion control.

Further, congestion control modifies cwnd frequently during the course of its nor-

mal operation. These modifications are done on many transitions of the congestion

control state machine and either increase or decrease cwnd depending on the tran-

sition. As a result, an attacker can increase or decrease cwnd, and therefore TCP’s

2This is true for all congestion control algorithms except Google’s new BBR [104] congestion control.
This includes Reno [35], New Reno [36], CUBIC [42], Compound TCP [105], and Vegas [106], among
others. However, BBR does maintain a variable containing the explicitly computed allowed sending
rate, which has similar properties for our purposes. As BBR’s public release was concurrent with
this work, we do not consider it further here.
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sending rate, merely by inducing TCP to follow specific normal transitions in the

congestion control state machine.

State Machine Cycles. Successful congestion control attacks traverse a cycle in

the congestion control state machine. This is due to the highly dynamic and cyclical

nature of congestion control where a sender often traverses the same set of states

many times over the course of a connection and multiple state transitions in a single

second are common. As a result, the impact on cwnd from a single transition is

quickly diminished by other transitions. For an attack to be effective and achieve

measurable, lasting impact, an attacker has to frequently induce TCP to follow some

desirable transition. Such a series of desirable transitions will form either a cycle or a

unique path in the state machine. Given the relatively small size (under 10 states) of

the congestion control state machine and the frequency of state transitions, anything

but the shortest connections would require a cycle to achieve a sufficiently long series

of desirable transitions.

Note that these characteristics are necessary but not sufficient for an attack on

congestion control. For instance a cycle may contain two manipulations to cwnd that

balance each other out, or a cycle may not be triggerable by the attacker.

Our abstract strategy generator takes as input an FSM model of congestion control

and a description of the desirable transitions. In our case, a desirable transition is

one that modifies cwnd. It outputs a list of all paths with cycles that contain a

desirable transition and can therefore be used by an attacker to achieve his goal.

This list includes the transitions in each path as well as the conditions that cause

each transition. We use a modified depth-first traversal to enumerate all paths in the

FSM. We formally define the abstract strategy generation problem and our algorithm

below.

State Machine Model. We define a model M describing the state machine of

the congestion control algorithm as a tuple (S,N ,V , C,A, σ, T ). S is a finite set of

states {s0, . . . , sn}, and the initial state is σ ∈ S. N represents a finite set of network

events (e.g., ACK signifies the reception of a TCP acknowledgment). V is a finite
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set of variables including both some fields of a received packet and some program

variables. For instance, New means the received ACK acknowledges some new data

and cwnd indicates the program variable that represents congestion window size. C

represents a finite set of conditional statements such that each element c ∈ C is a

quantifier-free first order logic (QF-FOL) formula [107] over V (e.g., dupAckCtr < 2).

A represents a finite set of assignment statements (i.e., protocol actions) over a subset

of V (e.g., “cwnd = 1” means the congestion window is set to 1). In addition, N ,

V , C, and A are pairwise disjoint. T represents the transition relations such that

T ⊆ S ×N × C × 2A × S.

Let ψ : T 7→ S and ξ : T 7→ S be two maps indicating the source and target of

a transition. For example, if a transition t ∈ T begins at sb and ends at se, then

ψ(t) = sb and ξ(t) = se. Let λ : T 7→ N × C and ℵ : T 7→ P(A) be two maps to

indicate the triggering conditions and the set of actions of a transition, respectively.

Now we define a path as follows.

Definition 5.3.1 Path: A path P in M is a sequence of pairs of states and tran-

sitions 〈(si0 , tj0), (si1 , tj1), . . . , (sik , tjk)〉, where k ≥ 0; each six ∈ S for 0 ≤ x ≤ k

and si0 = σ (the initial state); ∀y [tjy ∈ T ∧ ψ(tjy) = siy ∧ ξ(tjy) = si(y+1)
] where

0 ≤ y ≤ k − 1; tjk ∈ {T ,⊥} and [ψ(tjk) = sik ∧ ξ(tjk) ∈ {S,⊥}]. In addition,

∀r, s[r 6= s→ sir 6= sis ∧ tjr 6= tjs ], where r, s ∈ {0, 1, . . . , k}.

In other words, a path P starts at σ and moves to the state si1 by taking the

transition tj0 . By following the sequence, P finally reaches at sik . The last segment

of P (i.e., (sik , tjk)) is special as it determines the existence of a cycle. If P contains

a cycle, then [tjk 6= ⊥ ∧ tjk ∈ T ] and ∃z[ξ(tik) = siz ], where z ∈ {0, 1, . . . , k}. When

P has no cycle, tjk = ⊥ and ξ(tjk) = ⊥.

Definition 5.3.2 Vulnerable path: Given a vulnerable action α ∈ A, a path P in

M is a vulnerable path if P has a segment (six , tjx) such that α ∈ ℵ(tjx), where

x ∈ {0, . . . , k} and k ≥ 0.
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Definition 5.3.3 Abstract strategy: Given a vulnerable path P in M such that P =

〈(si0 , tj0), . . . , (sik , tjk)〉 for some k ≥ 0, the corresponding abstract strategy S is

defined as 〈(si0 , λ(tj0)), (si1 , λ(tj1)), . . . , (sik , λ(tjk))〉, where λ(tjx) ∈ (N ×C) if tjx ∈

T or λ(tjx) = ⊥ if tjx = ⊥ for each 0 ≤ x ≤ k.

Abstract Strategy Generator. Given M, a directed multigraph3 with cycles,

and the attacker’s goal α ∈ A, the Abstract Strategy Generator aims to find all

the vulnerable paths in M with respect to α. We devise the algorithm shown in

Algorithm 2, which begins the search from the function VulnerablePathFinder.

Intuitively, the algorithm traverses the entire graph in a depth-first fashion, starting

at the initial state σ ∈ S. For each transition t ∈ T such that ψ(t) = σ, the algorithm

initializes a new path P , appends (σ, t) to P , and recursively continues its exploration

of the subgraph rooted at ξ(t). For P , the recursion stops when it encounters a cycle

(line 13) or a terminating state (line 15). If any of these stop conditions is met,

the algorithm checks if P is a vulnerable path with respect to α; if so, it adds P to

the set of the vulnerable paths (line 20). Unlike traditional depth-first traversal, the

algorithm restores the subgraph rooted at ξ(t) by marking it unvisited (line 28) in

order to find all possible vulnerable paths w.r.t. α. Upon termination, the algorithm

returns the set of vulnerable paths w.r.t. α (line 10) identified during the exploration.

This set of vulnerable paths contain our abstract strategies. We generate our abstract

strategies {S} by taking projections on the conditions of the transitions along each

path.

5.3.3 Concrete Strategy Generation

An abstract strategy just specifies a path in the FSM that can lead to an attack.

However, there are usually several ways in which this path can be concretely achieved

at runtime. Concrete strategy generation takes our abstract strategies and converts

3A multigraph permits multiple edges between a pair of vertices
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Algorithm 2: TCPwn Abstract Strategy Generator

Input: Multigraph M = (S,N ,V, C,A, σ, T ), ψ, ξ, λ, ℵ and a vulnerable action
α ∈ A

Output: All vulnerable paths with respect to α

1 V ulnerablePaths := ∅ /* to store vulnerable paths */

2 Function VulnerablePathFinder(M, α)
3 root := σ
4 Mark root as visited
5 foreach transition t such that ψ(t) = root do
6 Create a new path P
7 P := P‖(root, t) /* concatenating */

8 v := ξ(t)
9 RecursiveSearch(v, P, α)

10 return V ulnerablePaths

11 Function RecursiveSearch(v, P, α)
12 base case := false
13 if v is already visited then /* reached a cycle */

14 base case := true

15 else if exists no t such that ψ(t) = v then
/* v is a terminating state */

16 base case := true
17 P := P‖(v,⊥) /* concatenating */

18 if base case is true then
19 if P is a vulnerable path w.r.t. α then
20 V ulnerablePaths := V ulnerablePaths ∪ P

21 else
22 Mark v as visited
23 foreach transition t such that ψ(t) = v do
24 v′ := ξ(t)
25 P ′ := P /* creating a copy */

26 P := P‖(v′, t) /* concatenating */

27 RecursiveSearch(v′, P ′, α)

28 Mark v as unvisited

29 return
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them into sets of basic message-based actions that can be applied by our attack

injector in particular states of the FSM.

Our concrete strategy generator considers each abstract strategy individually and

iterates through each transition in that strategy. Each of these network conditions is

mapped to a basic action that the attacker can directly utilize to trigger that network

condition in that state. This results in a set of (state, action) pairs which we call a

concrete strategy. A transition condition may be triggered by multiple basic actions,

in which case this mapping results in a set of basic actions that could be applied in

that state to cause the next transition. Our generator creates one concrete strategy

for each combination of actions from these sets. Note that we require a domain

expert to provide the mapping of network conditions to basic actions since it relies on

domain knowledge. This mapping only needs to be updated when the state machine

model changes or new actions are added; generating concrete actions for a given

implementation is completely automated.

We developed our set of basic actions based on an extensive study of TCP and

known congestion control attacks. We also sought to restrict the information required

by our attack injector primarily to message format and current congestion control

state information, for practicality. We consider two categories: injection of acknowl-

edgements, which captures the capabilities of an off-path attacker, and modification

of acknowledgements, which captures the capabilities of an on-path attacker.

Injection of acknowledgements (off-path attacker). This type of action

injects new spoofed acknowledgement packets for either the client or server of a target

connection. Since congestion control algorithms usually rely on acknowledgements to

indicate lost packets and to gradually increase the sending rate, injecting additional

acknowledgements may cause significant issues for congestion control at fairly low

cost to an attacker. This type of action parallels the capabilities of off-path attackers.

We support a number of different ways of injecting acknowledgements:

(1) Duplicate Acknowledgements (param: dup no, delay, offset) — Injecting many

acknowledgements with the same acknowledgement number as an apparent set of du-
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plicate acknowledgements. This enables an off-path attacker to slow down a connec-

tion. This action assumes that target connection’s sequence and acknowledgement

numbers are known or can be guessed. Parameters control the number of duplicates

injected (2, 10, 1000), the spacing between these duplicates (1ms), and offset from

the current acknowledgement number (0, 3000, 90000).

(2) Offset Acknowledgements (param: num, delay, data, offset) – Injecting a series

of acknowledgements with an acknowledgement number offset from the legitimate ac-

knowledgement number. Acknowledges either less or more data than is acknowledged

by the receiver. This action assumes that target connection’s sequence and acknowl-

edgement numbers are known or can be guessed. Parameters control the number of

acknowledgements injected (10000, 50000), the spacing between these acknowledge-

ments (1ms, 2ms), any bytes of data included (0, 10), and any offset from the current

acknowledgement number (0, 100, 3000, 9000, 90000).

(3) Incrementing Acknowledgements (param: num, delay, data) — Injecting a se-

ries of acknowledgements where the acknowledgement number increases by a variable

amount each time. Congestion control expects these acknowledgements to indicate

the successful receipt of new data and will act accordingly. This action assumes that

target connection’s sequence and acknowledgement numbers are known or can be

guessed. Parameters control the number of acknowledgements injected (50000), the

spacing between these acknowledgements (1ms), and the amount the acknowledge-

ment number is incremented with each packet (9000, 90000).

Modification of acknowledgements (on-path attacker). This type of action

changes the manner in which acknowledgements for the sequence space are sent. To

do so, it requires an on-path attacker because the genuine acknowledgement packets

need to be modified. This action leverages the key role that acknowledgements play

in TCP congestion control. Not only are they used to determine loss via duplicate

acknowledgements, but they are used to clock out new data packets (the “conservation

of packets” principle [93]) and increase the sending rate. We support a number of

manipulations to the sequence of acknowledgements for a data stream:
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(1) Division (param: chunk size) — Acknowledge the sequence space in chunks

much smaller than a single packet. This splits a single acknowledgement packet

into many acknowledgement packets that acknowledge separate ranges. A parameter

controls the number of bytes to acknowledge in a single chunk (100). This technique

has been known to cause significant and unfair increases in sending rate with overly-

trusting senders who assume that one acknowledgement represents one packet [11].

(2) Duplication (param: dup no) — Duplicate acknowledgements of chunks of the

sequence space repeatedly. A parameter controls the number of duplicate acknowl-

edgements to create (1, 4, 100). This breaks the assumption that each acknowledge-

ment received corresponds to a packet that left the network. The Dup Ack Attack

leverages this assumption during Fast Recovery to trick the sender into sending new

data packets at the same rate as incoming duplicate acknowledgements [11].

(3) Pre-acknowledging (param: none) — Acknowledging portions of the sequence

space that have not been received yet. This hides any losses, preventing slow downs,

and effectively shrinks the connection’s RTT, allowing faster than normal throughput

increases. This is referred to as the Optimistic Ack Attack [11].

(4) Limiting (param: none) — Prevents the acknowledgement number from in-

creasing. This generates duplicate acknowledgements but also prevents any new data

from being acknowledged. This is likely to stall the connection and lead to an RTO.

5.3.4 State Tracker

In order to test a strategy against an implementation, TCPwn needs to know the

state of the sender with respect to congestion control. This is not an easy problem as

there are several implemented congestion control algorithms such as Reno [35], New

Reno [36], CUBIC [42], Compound TCP [105], and Vegas [106]. Implementations may

also choose to include an Application Limited state, adjustable dupACKctr thresholds,

and optional enhancements like SACK [37], DSACK [38], TLP [39], F-RTO [41],

and PRR [40]. Additionally, we desire to do this without modifying the sender or
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making assumptions about what kind of debugging information it makes available.

Finally, key variables that determine the state of the sender (like cwnd, ssthresh,

and rto timeout) are not exposed by the sender and are not readily computable from

network traffic. Further, the observed behavior of an implementation depends not

only on events observable from the network but also on internal events like the fullness

of the driving application’s buffer. As one example, it is impossible, by looking only

at the network traffic, to distinguish an RTO event from an idle application that

suddenly decided to send a single packet of data.

To overcome these challenges, we choose to approximate the congestion control

state machine by focusing on its core states and assume a bulk transfer application

that always has data available to send. This is practical because nearly all TCP

congestion control algorithms contain the same basic core set of states from TCP

New Reno (see Figure 2.3) with the differences being in terms of small changes in the

actions done on each transition or the insertion of extra states. For example, CUBIC

TCP simply modifies the additive increase and multiplicative decrease constants on

the transitions to Fast Recovery and Congestion Avoidance. Similarly, TLP adds a

single state before Exponential Backoff. It is entered using a slightly smaller timeout

and sends a single new packet to try and avoid an expensive RTO. Assuming a bulk

transfer application enables us to make assumptions about application behavior when

needed.

We developed the novel algorithm shown in Algorithm 3 to track the sender’s

congestion control state using only network traffic. We find that this algorithm works

well even when used with implementations containing complex state machines and

enhancements that we approximate using only TCP New Reno. Our algorithm detects

the Fast Recovery state even when the cwnd reduction is CUBIC’s 0.8 factor and not

the 0.5 used by New Reno. It still identifies retransmitted packets and enters Fast

Recovery even if SACK is in use and Fast Recovery was triggered via SACK blocks.

TLP is a case where our approximation fails, but even here we misclassify a tail-loss-
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Algorithm 3: State Tracking for TCPwn

1 Function Init()

2 Start timer intervalT imer to expire every sub rtt ms (10ms)
3 priorPkt = curPkt = now()

4 urgEvent = false
5 state = UNKNOWN

6 Function OnPacket(p)
7 update dataBytes, dataPkts, ackBytes, ackPkts, seqHigh, highAck, curPktType and

rexmits based on p
8 if curPkt < now()− max burst gap then
9 lastIdle = now()

10 priorPkt = curPkt
11 curPkt = now()

12 Reset timer packetT imer to expire in max burst gap ms (5ms)
13 if rexmits > 0 then
14 urgEvent = true
15 Reset timer packetT imer to expire now

16 Function OnTimer()

17 if urgEvent or curPkt >max burst gap or lastIdle > 4∗sub rtt then
18 urgEvent = false
19 if curPktType is SYN then
20 state = INIT
21 return

22 if curPktType is FIN or RST then
23 state = END
24 return

25 curRatio = dataBytes / ackBytes
26 pktSpace = curPkt− priorPkt
27 if dataPkts > 0 and (pktSpace > 200ms) then
28 state = EXP BACKOFF

29 else if state == FAST RECOV and ackHigh < ackHold then
30 state = FAST RECOV

31 else if rexmits > 0 or (ackBytes == 0 and ackPkts > 3) then
32 ackHold = seqHigh
33 state = FAST RECOV

34 else if (curRatio+ priorRatio)/2 > 1.8 then
35 state = SLOW START

36 else if (curRatio+ priorRatio)/2 > 0.8 then
37 state = CONG AVOID

38 else if state == EXP BACKOFF and curRatio < 0.1 then
39 ackPkts = 0

40 else
41 priorRatio = 0.8 ∗ curRatio+ 0.2 ∗ priorRatio
42 return

43 priorRatio = curRatio
44 ackPkts = ackBytes = dataPkts = dataBytes = rexmits = 0
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probe as an RTO. This is only a minor issue because both states are entered via by

timeouts and trigger the transmission of a single packet.

The core idea of our algorithm is to take a small (sub-RTT) time slice and observe

the packets received and sent by an implementation. If about twice as many bytes

of data have been sent as acknowledged, the state is inferred to be Slow Start and

the sending rate is increasing exponentially. If about an equal number of bytes have

been sent and acknowledged, the state is inferred to be Congestion Avoidance since

the sender is maintaining a steady sending rate. If fewer bytes have been sent than

acknowledged or there are retransmitted packets, the state is inferred to be Fast

Recovery, and if no packets are received and only a few packets are sent, then an

RTO event was observed and the sender is in state Exponential Backoff.

Our algorithm uses two timers, the first fires every sub rtt seconds and the second

fires max burst gap seconds after each packet unless reset. This first timer handles

the case where TCP is operating at high speed and has packets in flight constantly

while the second handles the case where TCP has not yet reached peak efficiency

and is sending packets in bursts and then waiting for their acknowledgements before

sending more. We experimentally set sub rtt to 10ms and max burst gap to 5ms

based on a network with an RTT of around 20ms.

Whenever either of these timers expires, the algorithm determines whether TCP

is sending data smoothly or in bursts. If TCP is sending data in bursts and it has

been less than max burst gap seconds since the last packet, this timer expiration is

ignored. Otherwise, the state inference is updated. If the most recent packet was

a SYN, FIN, or Reset, then the connection state is INIT or END. Otherwise, we

compute the ratio of sent to acknowledged data and the space between the two most

recent packets, and use this information to determine what state the sender is in based

on the intuition presented above. We then reset our data sent and data acknowledged

counters. For the Slow Start and Congestion Avoidance state, we average the ratios

from the last two sampling periods as we found experimentally that this helped to
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Figure 5.3.: TCPwn Testing Environment

produce more accurate results. Finally, if the ratio is less than 0.8, a situation that

should never occur, we ignore this sample and do not reset our counters.

5.4 Implementation

This section discusses how we implemented TCPwn and apply it to real imple-

mentations of TCP to identify attacks.

TCPwn is able to test real implementations easily, despite diverse programming

languages, operating systems, hardware support, and libraries. Given the different

variants of TCP congestion control algorithms, features, and optimizations [37–43]

any implementation has to make choices about what configuration and combination

of features will be provided. This leads to minor differences in congestion control

behavior between implementations which can enable or prevent particular attacks or

even attack classes. Further, TCP implementations are typically written as part of the

operating system in a low level language like C and highly optimized for performance,

leading to an increased probability of implementation bugs.



109

5.4.1 Testing Environment

We developed a testing environment (Figure 5.3) which leverages virtualization

for both client and server, enabling us to run a wide range of implementations, in-

dependent of operating system, programming language, libraries, or availability of

source code.

We connect four virtual hosts into a dumbbell topology with two clients on one

side, two servers on the other, and a single bottleneck link between. When each

client connects to one of the servers, this topology provides an environment where

two flows have to compete for bandwidth on the bottleneck link. This competition is

precisely what an attacker must influence in order to either increase or decrease the

throughput of his target flow. We connect the virtual machines together with Linux

tap devices and bridges. We artificially cap the bandwidth on the bottleneck link and

introduce a 10ms delay, using Linux traffic control. This gives us a virtual network

based on the widely used Linux networking stack that supports throughput in excess

of 800Mbits/sec.

One of the servers runs the target TCP implementation under test. The other

hosts run a standard TCP stack and serves simply to complete the test harness and

generate necessary traffic. To generate traffic, our tests use file transfers over HTTP.

This simplifies setting up the target implementation, as HTTP servers are available

for a wide variety of operating systems and implementations.

The Attack Injector is implemented as a proxy placed in the middle of the bottle-

neck link. It intercepts all packets in the target connection and applies any on-path

basic actions. It can also inject new packets into the network to emulate an off-path

attacker. The proxy also measures connection length and amount of data transferred

for attack detection and is implemented in C++.

The State Tracker component is also implemented as a proxy and is placed in our

testing environment as near to the target sender as possible. This proxy observes

the packets sent and received by the sender over small timeslices to automatically
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infer the current state of the sender’s TCP congestion control state machine. We

experimentally set sub rtt to 10ms and max burst gap to 5ms based on a network

with an RTT of around 20ms. This proxy is also implemented in C++.

This whole environment is controlled and coordinated by a Controller script that

takes a concrete strategy from our strategy generator, orchestrates the virtual ma-

chines, applications, Attack Injector, and State Tracker components to test that strat-

egy, collects the results, and returns them for analysis.

5.4.2 Attack Detection

The goal of an attacker targeting congestion control is to impact throughput. We

distinguish between four cases for a target connection that are the observable outcome

of an attack:

• Benign: no attack occurs.

• Faster: the sender sends at a faster rate that is should; throughput is larger

than the benign case; this corresponds to a sender bypassing congestion control

to send faster.

• Slower: the sender is made to send at a slower rate that what the network

conditions will allow; the throughput is smaller than a benign connection.

• Stall: the connection has stalled and will never complete; this corresponds to

the case where the attacker made the connection to stall.

Measuring the time it takes to transfer a file at the application layer is not sufficient

because it does not allow us to distinguish between two cases: sending faster or

connection stalled. Both appear, in some cases, as stalled because the TCP receiver

has blocked reassembling data, while all data has already been sent. Thus, the first

metric we use is the time it takes to transfer and acknowledge all data packets at the

TCP level, referred to simply as Time below.4 Thus, we measure the time from when

4This definition explicitly excludes trailing RTO retransmissions that are never acknowledged.
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the SYN packet is sent to the last set of data carrying packets that arrive within a

second of each other.

The time needed to transfer the data at the TCP level is not sufficient to accurately

classify attacks because it does not capture the case when the connection stalls out

part way through due to an attack and the file has actually not been transferred in its

entirety. To detect this case, we use a second metric, the amount of data transferred

in the connection at the TCP-level, referred to as SentData below.

We perform 20 tests transferring a file of size FileSize without any attacks being

injected to create baseline average and standard deviation values of TimeBenign and

stddev. Then, using the Time and SentData metrics defined above, our detection

works as follows:

if Time is > (TimeBenign + 2*stddev):

Attack: Slower

else if Time is < (TimeBenign + 2*stddev):

if SentData >= (0.8*FileSize):

Attack: Faster

else:

Attack: Stall

else:

Benign

5.5 Results

We tested five different implementations of TCP in five operating systems: Ubuntu

16.10, Ubuntu 14.04, Ubuntu 11.10, Debian 2, and Windows 8.1. The tests were run

on a hyperthreaded 20 core Intel R© Xeon R© 2.4GHz system with 125GB of RAM. We

configured the bottleneck link to be 100Mbits/sec, with a 20ms RTT, and generated

traffic for both the target and competing TCP connections with a 100MB HTTP file

download for all implementations except Debian 2. Due to limitations with the vir-

tualized NIC, Debian 2 was limited to 10Mbits/sec, so we also limited the bottleneck
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Table 5.1.: Summary of TCPwn Results

Implementation Attacker Tested Marked FP Attacks

Ubuntu 16.10 (Linux 4.8) On-path 564 38 3 35
Ubuntu 14.04 (Linux 3.13) On-path 564 37 1 36
Ubuntu 11.10 (Linux 3.0) On-path 564 16 6 10
Debian 2 (Linux 2.0) On-path 564 3 0 3
Windows 8.1 On-path 564 9 1 8

Ubuntu 16.10 (Linux 4.8) Off-path 753 466 8 458
Ubuntu 14.04 (Linux 3.13) Off-path 753 448 9 439
Ubuntu 11.10 (Linux 3.0) Off-path 753 564 10 554
Debian 2 (Linux 2.0) Off-path 753 425 0 425
Windows 8.1 Off-path 753 471 3 468

Total 6585 2477 41 2436

link to that same rate with a 20ms RTT while traffic generation used a 10MB file.

We used the Apache webserver for Linux and IIS on Windows.

Testing each implementation took about 13 hours for the on-path testing and 21

hours for the off-path testing, using only 6 cores. Testing each strategy is independent

and takes between 15 and 60 seconds. With 48 cores running eight testing environ-

ments (each needs 6 cores), the on-path testing could have been completed in 1.6

hours and the off-path testing in 2.6 hours.

Over all the tested systems, we tested 6,585 strategies and found 2,436 attacks,

which we classified into 11 classes. 8 of these classes were previously unknown in the

literature. We summarize the attacks in Tables 5.1 and 5.2.

While this analysis was performed manually, we observe that it is amenable to

automation. In our results, three classes of attacks—Optimistic Ack, Desync, and Ack

Lost Data—make up the majority of marked strategies. An automated classification

of these three categories leaves only 281 (11%) strategies to manually examine.



113

Table 5.2.: Classes of Attacks Discovered by TCPwn

Num Attack Attacker Description Impact Impl New

1 Optimistic
Ack

On-path Acking data that has
not been received

Increased
Throughput

ALL No [11]

2 On-path
Repeated
Slow Start

On-path Repeated cycle of Slow
Start, RTO, Slow Start
due to fixed ack num-
ber during Fast Recov-
ery

Increased
Throughput

U16.10,
U11.10

Yes

3 Amplified
Bursts

On-path Send acks in bursts,
amplifying the bursty
nature of TCP

Increased
Throughput

U11.10 Yes

4 Desync
Attack

Off-path Inject data to desyn-
chronize sequence
numbers and stall
connection

Connection
Stall

ALL No [99]

5 Ack Storm
Attack

Off-path Inject data into both
sides of connection,
creating ack loop

Connection
Stall

D2,
W8.1

No [100]

6 Ack Lost
Data

Off-path Acknowledge lost data
during Fast Recovery
or Slow Start

Connection
Stall

ALL Yes

7 Slow
Injected Acks

Off-path Inject acks for lit-
tle data slowly during
Congestion Avoidance

Decreased
Throughput

U11.10 Yes

8 Sawtooth
Ack

Off-path Send incrementing
acks in Congestion
Avoidance/Fast Re-
covery, but reset on
entry

Decreased
Throughput

U16.10,
U14.04,
U11.10,
W8.1

Yes

9 Dup Ack
Injection

Off-path Inject >= 3 duplicate
acks repeatedly

Decreased
Throughput

D2,
W8.1

Yes

10 Ack
Amplification

Off-path Inject acks for lots of
new data very rapidly
during Congestion
Avoidance or Slow
Start

Increased
Throughput

U16.10,
U14.04,
U11.10,
W8.1

Yes

11 Off-path
Repeated
Slow Start

Off-path Repeated cycle of Slow
Start, RTO, Slow Start
due to increased dupli-
cate ack threshold

Increased
Throughput

U11.10 Yes
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5.5.1 On-path Attacks

We only consider attacks resulting in increased throughput for some target con-

nection to be of interest to this attacker. Our model-guided strategy generation

produced 564 strategies based on the basic actions described in Section 5.3.3. As

shown in Table 5.1, our system marked between 3 and 38 of these strategies (depend-

ing on implementation). A few of these marked attacks were false positives, due to

the imprecision of testing with a real network and real implementations. In partic-

ular, while our target connection typically incurs its first loss within 0.5 seconds of

starting, due to competing with the background connection, in these false positive

tests the first loss in the target connection does not occur until after at least 1.5

seconds. Since TCP continues to increase its sending rate until it gets a loss, this

results in an unusually high sending rate. This longer time to loss is not attributable

to any basic action applied, but is simply a result of variations in packet arrival and

departure times, packet processing delays, operating system scheduling, and other

random variations. The remaining marked strategies are real attacks against a TCP

implementation. We identified between 3 and 36 of these, depending on the imple-

mentation. Through manual analysis, we grouped these into 3 classes (Table 5.2),

two of which are previously unknown in the literature.

On-path Repeated Slow Start (new). These attacks operate by repeatedly

inducing an RTO followed by Slow Start. Thanks to Linux’s choice to use a short

RTO timer, the rapid increase in sending rate during Slow Start balances out the

idle period needed to cause an RTO and in many tests actually provides a higher

average sending rate. This is partly due to the significant impact this attack has on

competing connections because of the repeated, rapid sending periods that end in

a loss for both connections. These repeated losses cause the competing connection

to slow down repeatedly. We found this attack class against both Ubuntu 11.10 and

Ubuntu 16.10. For both implementations, this behavior is best induced by preventing
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an increase of the cumulative acknowledgement in Fast Recovery, preventing recovery

of losses and causing an RTO. We believe this attack to be unknown in the literature.

Amplified Bursts (new). This class of attack operates by collecting acknowl-

edgement packets and then sending them together in a burst. This additional bursti-

ness often causes more frequent losses in the competing connection which causes it to

slow down and our target flow to increase its throughput. We found this attack class

against Ubuntu 11.10 with a strategy that collected acknowledgement packets to send

them in bursts during Congestion Avoidance and optimistically acknowledged data

during Slow Start, increasing the size of cwnd. It is interesting to note that without

our model-guided strategy generation we would have been extremely unlikely to find

this attack. This is because delaying acknowledgements and sending them in bursts

is only a good idea during Congestion Avoidance. During Slow Start, cwnd is small

enough that there may not be enough acknowledgements in flight to make a single

burst, leading to a connection stall. Similarly, in Fast Recovery, the sender needs to

get acknowledgements as soon as possible so that it can recover from the loss and

keep sending data. Delaying acknowledgements and collecting enough for a single

burst tends to cause the connection to stall.

This attack bears significant resemblance to the Induced-Shrew Attack [8]. How-

ever, that attack seeks to manipulate a TCP connection to cause catastrophic through-

put reduction on other competing connections while maintaining a minimal sending

rate itself. Instead, the Amplified Burst attack focuses on increasing the through-

put of our target connection; we believe this attack to be previously unknown in the

literature.

Optimistic Ack (known). This class of attack operates by optimistically ac-

knowledging data that the receiver has not received and acknowledged yet. This

reduces the effective RTT of the connection, allowing TCP to increase its sending

rate faster, and hides lost packets, preventing TCP from slowing down in response

to congestion. By hiding lost packets, the receiver will not receive the complete data

transfer, but this may be acceptable if the data stream can tolerate losses or if the
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attacker does not care about the data, i.e., is simply conducting a denial of service

attack.

This attack class was first identified in [11]. Unfortunately, the mitigations pro-

posed require non-backwards-compatible modifications to TCP, such as inserting a

random nonce into each packet. As a result, this attack class is still present in modern

TCP implementations, and we found many instances of it in all 5 of the implemen-

tations we tested. In our tests, this attack usually caused the target connection to

consume all available bandwidth up to the network and/or sending system capac-

ity. This left the competing connection starved for bandwidth, often doing repeated

RTOs, and with throughput near zero for the duration of the attack.

5.5.2 Off-path Attacks

An off-path attacker can observe network traffic but cannot directly modify such

traffic. As a result, they are limited to injecting new (possibly spoofed) packets into

the network. In addition to increasing throughput, possibly as part of a denial of

service attack, an off-path attacker might be interested in decreasing the throughput

or stalling some target connection.

Our model-guided strategy generation produced 753 strategies based on injecting

spoofed packets. As shown in Table 5.1, our system marked between 425 and 564 of

these strategies (depending on implementation) as attacks. A few of these marked

attacks turned out to be false positives. These are mostly cases where, due to impre-

cision from testing real implementations, the target connection does not see its first

loss for an abnormally long time, leading to a higher sending rate than normal. We

present a summary of the attack classes found in Table 5.2.

Ack Lost Data (new). This class of attacks contains a wide range of operations

that cause lost data to be perceived as acknowledged at some point in the connection.

This occurs when an attacker injects a spoofed acknowledgement packet acknowledg-

ing data above the current cumulative acknowledgement when the network is about
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to enter Fast Recovery. In this case, at least some of the lost data will be deemed

acknowledged by the victim, causing that data to never be retransmitted. At this

point, anything the sender retransmits or sends will not cause the receiver to increase

the cumulative acknowledgement and the connection permanently stalls. We found a

wide variety of strategies in this attack class against all implementations we tested.

Slow Injected Acks (new). These attacks operate by injecting spoofed ac-

knowledgements that increase their acknowledgment number at a slow and constant

rate. As these acknowledgement packets are injected, each one causes TCP to send

a few packets—equivalent to the amount of data acknowledged—, due to TCP’s self-

clocking design. This essentially causes TCP to bypass congestion control and cwnd

entirely and send at the rate at which the spoofed acknowledgements are acknowledg-

ing data: ack amount∗injection frequency. This rate can be made much slower than

TCP would otherwise achieve. Additionally, due to the spoofed acknowledgements,

any real acknowledgements for data will be considered old and ignored. We found

this class of attacks against Ubuntu 11.10 and believe it to be unknown previously in

the literature.

Sawtooth Ack (new). These attacks also operate using spoofed acknowledge-

ments that increase their acknowledgement number at a steady pace. However, these

packets may acknowledge more data and occasionally reset their acknowledgment

number to the true cumulative acknowledgement point. This starting over, typically

at a state transition from Congestion Avoidance to Fast Recovery or back, results in

a long string of spoofed acknowledgements with increasing acknowledgement num-

bers that eventually reaches the previous high acknowledgement, at which point the

sender begins sending new data. This causes a very prominent sawtooth pattern in

a time sequence graph of the connection. Due to the increasing number of acknowl-

edgements that must be sent to reach the highest acknowledgement each time, the

sending rate of a connection under this type of attack continuously decreases. We

found this class of attacks against Ubuntu 16.10, Ubuntu 14.04, Ubuntu 11.10, and

Windows 8.1 using a variety of strategies. In our tests, this attack usually resulted
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in approximately a 12x reduction in throughput. The attacker is required to expend

approximately 40Kbps to keep the attack going.

Dup Ack Injection (new). This class of attack operates by repeatedly injecting

three or more spoofed duplicate acknowledgements into the target connection in hopes

of spuriously triggering Fast Recovery and slowing the connection down. We have

found this class of attack to be very effective against Windows 8.1 and Debian 2.

Newer Linux versions are not vulnerable to this attack due the use of DSACK [38] to

detect spurious retransmissions and a mechanism to dynamically adjust the duplicate

acknowledgement threshold needed to trigger Fast Recovery [108]. In our tests, this

attack often resulted in approximately a 12x reduction in throughput when using

Windows 8.1 or Debian 2. The connection repeatedly enters Fast Recovery and

needlessly retransmits significant data. The attacker needs only 40Kbps of bandwidth

to launch this attack.

Ack Amplification (new). This class of attack operates similarly to Slow In-

jected Acks. Instead of sending spoofed acknowledgements with increasing sequence

numbers slowly, the attacker sends them very quickly. Each one causes the sender

to send a large burst of packets, effectively bypassing congestion control and cwnd

completely. This effect is even more pronounced in Slow Start, where the sender can

send two bytes for every one acknowledged. Additionally, since any losses are masked

by the spoofed acknowledgements, TCP will never slow down. This results in a very

powerful class of attack where an attacker can cause the target connection to consume

all available bandwidth up to the network and/or sending system capacity by simply

sending acknowledgements at around 40Kbps. In our tests, the competing connection

was left starved for bandwidth, with throughput near zero, and often doing repeated

RTOs for the duration of the attack. The low bandwidth required of the attacker

makes this ideal for a denial of service attack. We found a wide variety of strategies

in this attack class against Ubuntu versions 16.10, 14.04, 11.10, and Windows 8.1.

Off-path Repeated Slow Start (new). This class of attacks is very similar to

the On-path Repeated Slow Start attacks discussed previously. The difference is that
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instead of repeatedly inducing Slow Start by preventing acknowledgements in Fast

Recovery from acknowledging new data, we instead inject duplicate acknowledge-

ments to increase Linux’s duplicate acknowledgement threshold to the point where

Fast Recovery is never entered and an RTO occurs instead. From there, we enter

Slow Start and repeat. As in the on-path version, the rapid increase in sending rate

during Slow Start balances out the idle period needed to cause an RTO and in many

tests actually provides a higher average sending rate. These attacks also significantly

impact competing connections due to the repeated, rapid sending periods that end in

a loss for all connections. These repeated losses cause competing connections to slow

down repeatedly.

We found this attack against Ubuntu 11.10. We believe this attack to have been

previously unknown in the literature.

Desync Attack (known). This class of attacks operates by spoofing packets

containing a few bytes of data to both sender and receiver in the target connection.

If a host is not currently receiving data, this injected data will incorrectly cause its

cumulative acknowledgement number to increase. All future packets by this host will

then have an acknowledgement number higher than anything the other host sent. and

will be ignored, causing an unrecoverable connection stall.

These attacks were first identified by [99]. The only known mitigation is encryp-

tion to prevent access to the sequence numbers of the packets. We identified many

instances of this attack class against all tested implementations and in all congestion

control states.

Ack Storm Attack (known). Ack Storm attacks are similar to Desync At-

tacks. The difference is that while only one half of the connection is desynchronized

in Desync Attacks, both sides become desynchronized by Ack Storm Attacks. As

before, we spoof packets with a few bytes of data to both sender and receiver in

the target connection. However, in this case, both sides are idle, so cumulative ac-

knowledgments at both sender and receiver are increased and both sides send new

acknowledgements. Unfortunately, since neither side actually sent any data, both will
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consider these acknowledgements invalid. As it happens, the TCP specification [34]

requires that a host receiving an invalid acknowledgement should respond with a

duplicate acknowledgement. This leads to an infinite storm of acknowledgements be-

tween both sides of the connection, as each responds to the invalid acknowledgements

from the other. Additionally, as in Desync Attacks, the target connection itself is

stalled and no further data can be transferred.

This is a known attack, first identified by [100]. One mitigation to this attack is

to ignore invalid acknowledgements if they show up too frequently. Unfortunately,

neither Debian 2 nor Windows 8.1 provide this mitigation, enabling us to discover

this attack with several different strategies.

5.6 Summary

Today, the testing of congestion control and the discovery of attacks against it is

mostly a manual process performed by protocol experts. We developed TCPwn, a

system to automatically test real implementations of TCP by searching for attacks

against their congestion control. TCPwn uses a model-guided attack generation strat-

egy to generate abstract attack strategies which are then converted to concrete at-

tack scenarios made up of message-based actions or packet injections. Finally, these

concrete attack scenarios are applied in our testing environment, which leverages vir-

tualization to run real implementations of TCP independent of operating system,

programming language, or libraries. We evaluated 5 TCP implementations including

both open- and closed- source systems, using TCPwn. We found 2,436 attack strate-

gies which could be grouped into 11 classes, of which 8 were previously unknown.
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6 PERFORMANCE AND AVAILABILITY ATTACKS FOR QUIC

Next generation transport protocols are introducing security features like data and

header encryption and performance optimizations like 0-RTT connections that have

important implications on the kinds of attacks they are vulnerable too. Some of these

features, like encryption, reduce the attack surface significantly, while others, like 0-

RTT connections based on caching, open up whole new areas that have not been

previously explored. In this chapter, we investigate one next generation transport

protocol, Google’s QUIC, and identify attacks on its performance and availability.

6.1 Introduction

The proliferation of mobile and web applications and their performance and secu-

rity requirements have exposed the limitations of current secure transport protocols.

Specifically, secure protocols like TLS [49] have a relatively high connection establish-

ment latency overhead, causing user unhappiness and often resulting in a decreased

number of customers and financial losses. As a result, several efforts [48,62,109,110]

have gone into designing new transport protocols that have low latency as one of

the major design goals, in addition to basic security goals such as confidentiality,

authentication, and integrity.

One of the most promising of these protocols is QUIC [48], a secure transport

protocol developed by Google and implemented in Chrome in 2013. QUIC integrates

ideas from TCP, TLS, and DTLS [111] in order to provide security functionality

comparable to TLS, congestion control comparable with TCP, as well as minimal

round-trip costs during connection setup/resumption and in response to packet loss.

Some of the major design differences from TLS are not relying on TCP in order

to eliminate redundant communication and the use of initial keys to achieve faster
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connection establishment. QUIC also includes techniques similar to to TCP Fast

Open [112], TLS Snap Start [113], and forward error correcting codes.

QUIC has already seen significant deployment, being supported by all Google

services and the Google Chrome browser; as of 2016, more than 85% of Chrome

requests to Google servers use QUIC [22]. In fact, given the popularity of Google

services, QUIC now represents a substantial fraction (estimated at 7% [114]) of all

Internet traffic. As a result, it is critical to understand its performance and availability

guarantees in the presence of attackers, especially considering that QUIC is envisioned

mainly for web content delivery and mobile applications.

Previous work examining QUIC has investigated its security guarantees [24,25] or

its performance in benign environments [26–30], but has not investigated its perfor-

mance and availability in the presence of attackers. There exists a significant body of

work looking at attacks on the performance and availability of older transport pro-

tocols like TCP [3, 5, 7–13]; however, these attacks all assume the ability to observe,

modify, or inject packets in the connection under attack. QUIC’s use of encryption

prevents packet modification or injection in the vast majority of cases as well as pro-

tecting against observation of packet data and acknowledgement information. This

complicates and restricts possible attacks. However, the caching of detailed informa-

tion about a server provided by QUIC’s server config (scfg), which enables 0-RTT

connections, is unheard of in existing protocols and provides a wealth of possible

information for attackers. This opens up a whole new mode of attack unavailable in

traditional transport protocols like TCP or DCCP.

In this chapter, we investigate QUIC’s performance and availability in the pres-

ence of attackers and the root causes underlying this behavior. Due to the use of

encryption, which effectively obscures any user data and most protocol state, we are

limited to considering the connection setup packets, which are sent in plain text. We

focus our investigation on the cacheable information in QUIC used to achieve 0-RTT

connections, as 0-RTT seems to be an important performance motivator for this and

other next generation transport protocols. We consider attacks by on-path attackers,
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with ability to modify packets; off-path attackers, with the ability to observe and

spoof packets; and blind attackers, who are limited to only injecting packets blindly

into the connection.

Through this investigation, we show that the very mechanisms used in QUIC to

achieve 0-RTT connections, such as unprotected fields on handshake packets and the

use of publicly available information on both client and server sides, can be exploited

by an adversary to attack QUIC’s availability during the connection establishment

handshake. In particular, we identify two classes of attacks on QUIC’s availability

based on replaying cached information or modifying unprotected information in the

packets used for the connection establishment handshake. We then successfully im-

plement 5 attacks against the Chromium implementation of QUIC.1 Four of these

attacks prevent a client from establishing a connection with a server, compromising

availability, while the fifth is a resource exhaustion denial of service attack against

QUIC servers. Note that these attacks only compromise the availability, not the se-

curity of QUIC. In all cases, we found the attacks easy to implement and completely

effective. In many cases, the client is forced to wait for QUIC’s ten-second connection

establishment timeout before giving up.

Our results suggest that the techniques used in QUIC to minimize latency may

not be useful in the presence of malicious parties. Although these weaknesses are not

completely unexpected, they are of significant concern to the QUIC team at Google

who have been developing a dedicated monitoring infrastructure to try to address

them [115]. Moreover, these issues appear to be fundamental limitations in 0-RTT

connections that rely on caching, an important result for next generation transport

protocols.

We note that some of these attacks are similar to known attacks against TLS

and TCP and investigate this similarity. However, TLS and TCP make no general

promises about their performance in the presence of adversaries. We find that even

1Specifically, QUIC version Q021, from October 2014.
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if QUIC’s performance may not be perfect, it is not worse than that of TLS in the

worst case, and is much better in the absence of adversaries.

To summarize, the contributions of this chapter are:

• We investigate QUIC’s performance and availability in the presence of attackers,

focusing on ways to leverage the use of caching during the connection estab-

lishment handshake to attack the connection. Later phases of the connection

are protected by encryption, which prevents the modification and injection of

packets as well as blinds the attacker to most protocol state. Our investigation

considers a variety of attackers, including on-path, off-path, and blind attackers.

• We identify two classes of attacks on QUIC’s availability based on replaying

cached information or modifying unprotected information in the packets used

for the connection establishment handshake. These classes of attacks are of

particular interest to other next generation transport protocols because they are

general to 0-RTT protocols relying on caching or protocols with any unprotected

packet fields. We further identify multiple attacks on QUIC within these classes.

• We demonstrate 5 attacks compromising the availability of QUIC clients or

servers running the Chromium QUIC implementation. Four of these attacks

prevent a client from establishing a connection with a server, compromising

availability, while the fifth is a resource exhaustion denial of service attack

against QUIC servers. Note that these attacks only compromise the availability,

not the security, of QUIC.

The rest of this chapter is organized as follows. Section 6.2 presents our investi-

gation of possible attacks against QUIC while Section 6.3 implements the attacks we

discovered and discusses their impacts on a real QUIC implementation. Section 6.4

then discusses these attacks and examines their similarity to existing attacks on TCP

and TLS. Finally, we summarize this chapter in Section 6.5.
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6.2 QUIC in the Presence of Attackers

In this section we investigate QUIC’s performance and availability in the presence

of attackers. Due to QUIC’s use of encryption during later phases of the connection,

we focus on the connection establishment handshake. In particular, we concentrate on

attacks possible by leveraging that cacheable information used to provide 0-RTT con-

nections or unprotected packet fields used during the handshake. QUIC’s cacheable

information consists of three components: 1)the server config or scfg that contains

important information about the server including a Diffie Hellman share, supported

encryption and signing algorithms, and flow control parameters; 2) the source-address

token or stk; and 3) the server nonce or sno. The scfg contains all the information

about the server needed to establish a 0-RTT connection and initial encryption key

while the stk is used to prevent IP spoofing and the sno is used to prevent packet

replay attacks. These components are unique to transport protocols providing 0-RTT

connections and contain a wealth of information about a server.

Also important to our investigation are unprotected packet fields in QUIC. With

so much of the packet encrypted or authenticated during the connection (i.e., any

data, any acknowledgment information, the contents of the scfg), it is important

to pay attention to those fields that are not authenticated immediately. These are

fields that may be able to be manipulated or spoofed by an attacker. These fields

include the connection id or cid, QUIC version number (if present), and public flags.

Additionally, a number of fields are considered as opaque byte-strings by the client

but authenticated by the server. These include the stk and sno.

Our investigation of these fields and components led to the identification of two

classes of attacks that compromise QUIC’s availability. The first of these classes

requires only an off-path attacker and operates by replaying QUIC’s cacheable infor-

mation to the client or server, misleading the other party about the progress of the

connection. The second of these classes modifies unprotected packet fields, requiring

an on-path attacker, to create different ideas about connection state on each side of
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the connection. Both of these classes prevent QUIC connection establishment. Per-

sistent failure to establish a QUIC session could further result in a fall-back to TCP,

defeating QUIC’s purpose of minimizing latency while securing the transport layer.

In the remainder of this section we discuss these two classes of attacks and multiple

specific attacks within each class.

6.2.1 Replay Attacks

Once at least one client establishes a session with a particular server, an attacker

could learn the public values of that server’s scfg as well as the source-address token

value stk corresponding to that client during their respective validity periods. An

attacker could then replay the server’s scfg to the client and the source-address token

stk to the server, misleading in either case the other party. This requires an off-path

attacker, with the ability to observe and inject packets.

Server Config Replay Attack. An attacker can replay a server’s public scfg

to any other clients sending initial connection requests to that server while keeping

the server unaware of such requests from clients. Thus, these clients believe they have

enough information to establish an initial connection with the server. When combined

with a random stk or sno, which a client cannot verify, this leads to a server not

recognizing the client and rejecting the their packets. While data confidentiality is

not affected, the clients would experience additional connection establishment latency

and waste computational resources deriving an initial key.

Source-Address Token Replay Attack. An attacker can replay the source-

address token stk of a client to the server that issued that token many times to

establish additional connections. This action would cause the server to establish

initial keys and even final forward-secure keys for each connection without the client’s

knowledge. Any further steps in the handshake would fail, but an attacker could

create a denial of service attack on the server by creating many connections on behalf
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of a many different clients and possibly exhausting the server’s computational and

memory resources.

Ironically, these attacks stem from parameters whose main purpose was to min-

imize latency by enabling 0-RTT connections. These attacks are more subtle than

simply dropping QUIC handshake packets because they mislead at least one party

into “believing” that everything is going well while causing it to waste time and

resources deriving an initial key.

Resolving these types of attacks seems to be infeasible without reducing the scfg

and stk parameters to one-time use, because as long as these parameters persist for

more than just a single connection, they can be used by an attacker to fake multiple

connections while they remain valid. However, such restriction would prohibit QUIC

from ever achieving 0-RTT connection establishment, the primary motivation for

using these parameters.

6.2.2 Packet Manipulation Attacks

An on-path attacker with access to the communication channel used by a client

to establish a connection with a particular server could flip bits of any unprotected

parameters, leading to different connection state at client and server. Of particular

interest are unprotected fields that are used to derive encryption keys. There are two

of these: the connection id cid and the source-address token stk. Modifying these

parameters leads the client and server to derive different initial keys which ultimately

leads connection establishment to fail. For a successful attack, the attacker has to

make sure that all parameters modified in this way seem consistent across all sent and

received packets with respect to any single party but inconsistent from the perspective

of both parties participating in the handshake.

This type of attack does not raise concerns over the confidentiality and authentic-

ity of communication that is encrypted and authenticated under the initial encryption

key, because even though the initial keys are different, they are not known by the
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attacker. Note also that if both parties do not agree on an initial key, they cannot es-

tablish a final encryption key in QUIC because the final s hello message is encrypted

and authenticated under the initial key. Therefore, these attacks do not compromise

the confidentiality and authenticity of communication encrypted and authenticated

under the final key.

These packet manipulation attacks are smarter than just dropping QUIC hand-

shake packets because the client and server progress through the handshake while

having a mismatched conversation, resulting in the establishment of inconsistent keys.

This causes both parties to waste time and resources deriving keys and other con-

nection state. In particular, the server performs all the processing required for a

successful connection, unlike in attacks that simply drop QUIC handshake packets.

A simple strategy for mitigating this type of attack would be to have the server sign

all such modifiable fields in its s reject and s hello packets. However, this would

incur the cost of computing a digital signature over all such modifiable parameters,

which would in turn open another opportunity for a denial of service attack in which

the adversary, with IP spoofing, could send many initial connection requests on behalf

of as many clients as it desires.

6.3 Attack Results

We have implemented the attacks on QUIC’s availability described in the previ-

ous section and discuss their results here. We target the Chromium implementation

of QUIC2 in our attacks, as this is the canonical implementation. Our attacks were

developed in python using the scapy library.3 We summarize our attacks, their prop-

erties, and impacts in Table 6.1.

2https://chromium.googlesource.com/chromium/src.git. We tested QUIC version Q024 from
git revision 50a133b51fa9c6a3dc2b82ce9fedcf074859cd13 from October 1, 2014.
3http://www.secdev.org/projects/scapy/

https://chromium.googlesource.com/chromium/src.git
http://www.secdev.org/projects/scapy/
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Table 6.1.: Attacks on QUIC

Attack Name Type Attacker Impact

Server Config Replay Attack Replay Off-path connection failure
Source-Address Token Replay Attack Replay Off-path server DoS
Connection ID Manipulation Attack Manip On-path connection failure;

server load
Source-Address Token Manipulation
Attack

Manip On-path connection failure;
server load

Crypto Stream Offset Attack Other Off-path connection failure

6.3.1 Replay Attacks

Replay attacks use values designed to be cached by the client, like the server config

scfg and the source-address token stk, to mislead either the client or the server into

believing that a connection is being established correctly. As these attacks require

snooping on legitimate connections, they require an off-path attacker.

Server Config Replay Attack. To conduct this attack, an attacker must first

collect a copy of the target server’s scfg. This can be done either by actively es-

tablishing a connection to the server or by passively listening for a client to attempt

a connection. In either case, the server’s scfg can be readily collected from a full,

1-RTT QUIC connection handshake.

Once the attacker has scfg, he waits for the target client to attempt to start

a connection. When the attacker sees a c hello message from the client, he can

respond with a spoofed s reject message using the collected scfg and randomly

generated stk and sno values. Similar s reject messages are the proper response to

a client that either does not have a cached copy of the server’s scfg or has a copy

that is no longer valid. We assume that the attacker is closer to the client than the

server is so that the s reject message reaches the client prior to the response from

the legitimate server. When the client receives this spoofed s reject message, it

promptly sends a new c hello message using these new scfg, stk, and sno values.
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When the real server receives this new c hello message, it will attempt to validate

it. However, the stk and sno values were randomly generated by the attacker and

so are almost certain to fail the validation. In response to this failure, the server

generates a new s reject message containing scfg and new stk and sno values.

This new s reject message provides the client with valid stk and sno values so

another c hello message could correctly complete the connection. However, when

testing this attack, we found two further issues, the combination of which will always

result in the connection terminating abnormally. The first issue is that each QUIC

packet includes an entropy bit in its header and QUIC acknowledgment frames include

a hash of these bits along with a list of unseen packets. The goal of this mechanism

is to prevent Optimistic Ack attacks [51]. In our case, an acknowledgment frame

will typically be included with the client’s second c hello message acknowledging

the spoofed s reject message. If the entropy bit in the attacker’s spoofed s reject

message does not match the entropy bit in the server’s real response, then the entropy

hash in this acknowledgement will not validate and the server will abruptly terminate

the connection.

The second issue is that a single QUIC connection provides multiple byte-streams

for data transfer, and the QUIC handshake takes place within a special byte-stream

reserved for connection establishment. This implies that all the c hello, s reject,

and s hello messages we have mentioned so far occur within the context of this byte-

stream and have offset and length attributes. As a result, if the attacker’s s reject is

not exactly the same size as the server’s response, then this byte-stream is effectively

broken. Any further messages from the server will be at offsets either above or below

the client’s position in the byte-stream. These messages will either be dropped or

buffered forever. After ten seconds the client will abruptly terminate the connection

because it is unable to complete the handshake.

In our tests, the combination of these two issues completely prevented the estab-

lishment of any QUIC connections. Connection attempts always terminated after

either half a second, in the case of an entropy bit mismatch, or ten seconds, if the en-
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tropy bits matched, but the byte-stream was corrupted. Our python implementation

requires that the attacker be about 20ms closer to the client than the server is, in

order to create an s reject message and have it reach the client before the server’s

legitimate response. However, with an optimized C implementation, this requirement

could be significantly reduced.

Source-Address Token Replay Attack. The stk token is supposed to prevent

packet spoofing by ensuring that a connection request originates at the IP address

claimed. The stk is created by the server as part of the s reject message. It contains

the client’s IP address and the current time, both encrypted. A client must present a

valid stk in its c hello message in order to perform a 0-RTT connection. However,

the stk token must be presented prior to encryption being established. This means

that any attacker who can sniff network traffic can collect stk tokens that can be

used to spoof connection requests from a specific host for a limited period of time, by

default 24 hours.

This attack operates by sniffing the network for s reject messages from the target

server. Each s reject message contains a new stk being sent to some client. For

each new stk seen, our attacker grabs the stk, the scfg, and the client’s IP address

and starts repeatedly spoofing 0-RTT connection attempts with random cids from

this client.

When the target server receives these requests, they appear to be legitimate 0-

RTT connection requests. The stk will validate because the stk is replayed from a

legitimate connection with an actual client at the spoofed IP address. As a result,

the server will create a new connection for this request. This includes creating initial

and forward-secure encryption keys and sending an s hello message. At this point,

the server believes it has completed connection establishment with the spoofed client.

In our tests, we used separate virtual machines for the attacker and server. We

found that a single attacker starting with a single stk and sending packets at 200KB/sec

was able to completely overwhelm our test server. The 2.4 GHz Intel R© Xeon R© CPU

dedicated to our server was pegged at 100% utilization, and the operating system’s
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out-of-memory killer eventually killed the server process after it exhausted the 3GB

of memory allocated to the server’s virtual machine.

It seems apparent that the QUIC server implementation in Chromium has no

limitation on the number of connections that can be established from a single IP

address. While we do not believe that this is the server implementation that Google

uses in production, it is the only open-source QUIC server available. Additionally,

much of the QUIC code is a library that we expect would be used by any production

QUIC server. Note, however, that even if a limit on the number of connections from

a single IP were added, this attack can inflate the number of connections to the server

by this maximum number for every observed QUIC client.

6.3.2 Manipulation Attacks

Manipulation attacks subvert key agreement by causing the client and server to

agree on different keys. This is done by modifying unprotected packet fields that

are used as input to the key derivation process. Two fields, the connection id cid

and source-address token stk, seem particularly interesting. We developed attacks

against both of these parameters. Note that modifying packet fields requires an on-

path attacker.

Connection ID Manipulation Attack. In this attack, the attacker is posi-

tioned on the path between the client and the server and re-writes the cid such that

the client and server see different values. The handshake proceeds as normal, with

the client requesting the scfg, if it does not have a cached copy, and then sending a

c hello message. This c hello is processed by the server and an s hello message

sent in response. At this point, the server believes the connection has been success-

fully established. However, when the client receives the s hello message sent by the

server, it will fail to decrypt. This is because the cid is an input to the encryption

key derivation process. Since the attacker changes the cid, the client and server will

compute different encryption keys.
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Unfortunately, decryption failure is not a sign of catastrophic handshake failure

because it can be caused by reordering. In particular, packets encrypted with the

forward-secure key will fail to decrypt prior to the reception of the s hello message,

which may be delayed due to reordering. As a result, packets failing decryption are

buffered until the handshake completes. With the bad s hello message buffered, the

client will eventually timeout and retransmit its c hello message. This process will

repeat until the client’s 10 second timer on connection establishment expires. At that

point the connection will be terminated.

An error message will be sent to the server when the connection is terminated.

However, this message will be encrypted with the initial encryption key, and thus the

server will fail to decrypt it and will queue it for later decryption. Since it cannot

decrypt the error message, the server will retain the connection state until the idle

connection timeout expires. This timeout defaults to 10 minutes.

Source-Address Token Manipulation Attack. The goal of this attack is to

prevent a client from establishing a connection, either denying access to the desired

application or forcing the client to fall back to TCP/TLS. It requires an attacker

positioned on the path between the client and the server who re-writes the stk such

that the client and server see different values. It is important that the server always

see the value it initially sent because it will validate stk later. To the client, however,

stk is simply an opaque byte string.

Any attempted connection request will proceed as normal, except that the attacker

silently changes the stk values seen by client and server. The client requests the scfg

from the server, which replies with the current scfg and an stk value. The client

then sends a full c hello to initiate the connection. The server receives and processes

this c hello and sends an s hello message in response.

When the client receives this s hello message sent by the server, it will fail to

decrypt. This is because stk is an input into the encryption key derivation process,

and the attacker has changed the stk value seen at the client. As a result, the client

and server will compute different encryption keys.
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However, as mentioned previously, a decryption failure is not a sign of catastrophic

handshake failure because this could happen due to reordering, if packets encrypted

with the forward-secure key were received before the s hello message. Hence, the

client buffers the bad s hello message for later decryption. Eventually the client

times out and retransmits the c hello message. This process will repeat until the

client’s 10 second timer on connection establishment expires. At that point the con-

nection will be terminated.

The client will notify the server that it terminated the connection, but, unfortu-

nately, this message will be transmitted encrypted with the initial encryption key.

Hence, the server will be unable to process it and will continue to retain the connec-

tion state. This state will only be removed when the idle connection timeout expires,

by default after 10 minutes.

We found that this attack effectively prevented all targeted QUIC connections.

Further, all targeted connections experienced a 10 second delay before timing out.

6.3.3 Other Attacks

While developing and testing the Server Config Replay Attack, we discovered an

additional attack against QUIC. This attack results from QUIC treating handshake

messages as part of a logical byte-stream.

Crypto Stream Offset Attack. Recall that handshake messages are part of

a logical byte-stream in QUIC. As a result, by injecting data into this byte-stream

an attacker is able to break the byte-stream and prevent the processing of further

handshake messages. The attack results in preventing a client from establishing a

connection using QUIC, either denying access to the desired application or forcing

the client to fall back to TCP/TLS.

We create the attack by injecting a four character string into this handshake

message stream. This injection is sufficient to prevent connection establishment. Our

attacker listens for c hello messages and responds with a spoofed reply containing
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the string “REJ\0” in the handshake message stream. As observed before, this breaks

connection establishment because any messages from the server will now start at the

wrong offset in the handshake message stream. Hence, they will be discarded or

buffered indefinitely.

A connection that is attacked in this manner will either be terminated by the

server because of an entropy bit mismatch or be timed out by the client after 10

seconds.

Note that an attacker requires very little information to launch this attack. No

information is needed from the client’s c hello message, QUIC packet sequence num-

bers always start from 1, and the cid can be omitted from any packet other than the

client’s c hello. As a result, all an attacker needs to launch this attack is knowl-

edge of when a connection attempt will occur and the 4-tuple (server IP, client IP,

server port, client port) involved. Of this 4-tuple, three items are already known: the

server’s IP, the client’s IP, and the server’s UDP port. If an attacker can guess the

client’s UDP port and when it will make a connection attempt, he can launch this

attack completely blind.

In our tests, the ephemeral UDP port range was still too large to brute force within

an RTT, at least with our python attacker. However, if the attacker can narrow the

port range sufficiently, then an optimized C implementation could probably conduct

this attack completely blind.

6.4 Attack Discussion

In this section we discuss how some of the attacks we found against QUIC relate

to prior attacks on TCP and TLS. We find that attacking QUIC is not easier than

attacking TLS over TCP.

Source-Address Token Replay Attack. This QUIC attack is similar to the

TCP SYN Flood attack [116] where the attacker sends numerous spoofed TCP SYN

packets to a server to overwhelm it and cause DoS. The QUIC attack does almost
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the same thing, but the attacker is limited in the IP addresses he can use for spoofed

packets. However, the impact of each spoofed packet is larger because QUIC needs

to create encryption keys after receiving the initial packet.

The classic mitigation to SYN Flood is SYN Cookies, opaque tokens passed to the

client by the server in the SYN-ACK and returned by the client on the final handshake

ACK [116]. A SYN-Cookie encodes enough information so that the server does not

need to keep state between the SYN and the final ACK and can serve as a proof that

the client resides at its claimed IP address. The server creates the connection state

structures only after the cookie is returned by the client, making it more difficult to

overwhelm the server with spoofed connection requests.

An stk serves a similar purpose in preventing spoofed packets. However, SYN

Cookies are single use, limiting their time and IP address validity [116]. This prevents

an attacker from using a SYN Cookie to spoof multiple TCP connections. While the

stk could be made single use, this would severely limit the cases where QUIC could

successfully establish a 0-RTT connection.

QUIC Manipulation Attacks. These QUIC attacks are similar to the SSL

Downgrade attack [117] against a modern TLS implementation. In both cases, an

on-path, man-in-the-middle attacker modifies packet fields and the attack is not dis-

covered until the end of the handshake, after key generation and multiple RTTs.

SSL Downgrade works against SSL connections where both endpoints have SSL

versions less than SSL 3.0 enabled. The goal is to downgrade the connection to an

older, less secure version of SSL [117]. Basically, the attacker rewrites the connection

request to indicate that the client only supports an older version of SSL, often version

2.0. The server and client then establish an SSL 2.0 connection, which the attacker

can presumably compromise.

SSL 3.0 adds protection against this attack by adding a keyed hash of all the

handshake messages to the Finished message and requiring the receiver to verify this

hash [117]. This defense is effective, but the attack will only be detected at the end

of the handshake.
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Our QUIC Manipulation Attacks have a similar outcome where the attack only

becomes apparent at the end of the handshake, when the keys generated by the client

and server do not match. Thus, the connection fails after a timeout, and the client

may fall back to TCP/TLS. Since QUIC is designed to provide much lower latency for

connection initiation than TCP/TLS, this compromises one of QUIC’s main goals.

As discussed in section 6.2.2, one simple mitigation would be to sign all modifi-

able fields in the server’s s reject and s hello messages. However, this introduces

signature computation overhead and a possible denial of service attack.

QUIC Crypto Stream Offset Attack. This attack is similar to the TCP ACK

Storm Attack [100] in that both result in the inability to transfer any more data

over the target byte-stream and are caused by an attacker inserting data into the

byte-stream.

The TCP ACK Storm Attack requires an off-path attacker who can observe a TCP

ACK packet of the target connection and then spoof data-bearing packets to both

the client and the server. This data will be received and processed by the client and

server and both will increase their ACK numbers as a result. Unfortunately, when an

ACK is eventually sent by either client or server, it will appear to acknowledge data

that the other side has not yet sent. TCP will drop such packets and send a duplicate

ACK. At this point, the TCP byte-stream is effectively broken; no more data can be

transferred because all packets will have invalid ACK numbers.

In much the same way, injection of data into a QUIC handshake stream disrupts

the stream offsets and prevents any further handshake negotiation. This eventually

results in connection timeout. Although a byte-stream is a convenient abstraction, it

does not appear to be a good fit for handshake data. A message stream, or sequence

of messages, would be less prone to disruption in this manner.
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6.5 Summary

QUIC is a new, next generation transport protocol that has seen significant adop-

tion and now makes up about 7% of Internet traffic. Unlike other transport protocols,

it encrypts user data and most protocol state and offers 0-RTT connection establish-

ment for improved performance. We investigate performance and availability attacks

against QUIC, focusing on QUIC’s use of caching to achieve 0-RTT and the im-

pact of unprotected packet fields. Our analysis identifies two classes of attacks on

QUIC’s availability, based on replaying cacheable information or modifying unpro-

tected packet fields. These attack classes appear to be general to 0-RTT protocols

relying on caching and unprotected packet fields. We further identify and demon-

strate 5 attacks on QUIC within these classes. Four of these attacks prevent a client

from establishing a connection with a server, compromising availability, while the

fifth is a resource exhaustion denial of service attack against QUIC servers. Note

that these attacks only compromise the availability, and not the security, of QUIC;

however, they significantly impact QUIC’s goal of low latency connections and deny

access to resources available over QUIC.
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7 RELATED WORK

In this section, we present related work organized by topic.

7.1 Automated Attack Detection

Prior work has looked at automatically finding attacks on network protocols.

Fuzzing has been the predominant approach in this research direction. While random

fuzz testing [118] is often effective in finding interesting corner case errors, the prob-

ability of “hitting the jackpot” is low because it typically mutates well-formed inputs

and tests the program on the resulting inputs. To overcome this inherent challenge

of fuzzing, a set of works like SNOOZE [14], KiF [15], and EXT-NSFM [16] leverage

the protocol state machine to cover deeper portions of the search space. KiF uses

the state machine to bias fuzzing towards unexplored search space while SNOOZE

uses it to reach deeper locations before beginning fuzzing, and EXT-NSFM uses it

to determine what part of the protocol to fuzz without unnecessarily restarting the

application. These and similar fuzzing tools primarily search for crashes or other fatal

errors.

Several other research efforts [5, 18, 19, 119–121] leverage program analysis, for

example, symbolic execution, to find vulnerabilities in protocol implementations.

MAX [5] focuses on finding performance attacks mounted by a compromised par-

ticipant in two-party protocols. However, MAX relies on user specified information

about interesting lines of code to limit the search space during symbolic execution.

Similarly, SymbexNet [119] tests two-party protocols by executing one party sym-

bolically to operate on symbolically marked input packets. Thus it can generate

high-coverage test input packets for the implementation, whose responses are verified

against manually derived rules from the specification. Many of these techniques re-
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quire access to the protocol implementation source code in a specific language and

most do not consider malicious parties.

MACE [18] combines symbolic execution with concrete execution to infer the pro-

tocol state machine and use it as a search space map to allow deep exploration for

bugs. The inferred state machine represents the external interactions of the protocol

(e.g., the sequence of exchanged messages). While this state machine captures tran-

sitions caused by distinct messages types, it is unable to identify transitions caused

by other characteristics of the exchanged messages. MACE searches only for crashes

or other fatal errors in protocol implementations and does not consider malicious

parties.

Turret [6] provides a platform for finding performance attacks against intrusion

tolerant distributed systems. Turret inserts a malicious proxy in front of an unmodi-

fied implementation to simulate a malicious attacker and uses a greedy search strategy

to look for the malicious actions that cause the largest impact in system performance.

While parts of our approach are similar, transport protocols require a very different

set of malicious actions than the multi-party, attack-resistant, application-layer pro-

tocols that Turret targets. Additionally, since intrusion tolerant distributed systems

are designed to be attack resistant, Turret is able to use a greedy search strategy

that looks for actions that cause performance impacts and then combines them. In

contrast, transport protocols are not designed with intrusion tolerance in mind, which

causes a greedy search strategy to fail completely. Instead we have to develop search

strategies based on models of the protocol’s behavior.

7.2 Transport Protocol Attacks

There has been significant prior work on finding attacks on transport protocols.

One of the earliest works in this area is [10] which identified the problems with pre-

dictable initial sequence numbers in TCP. The authors demonstrated that predictable

initial sequence numbers enable a blind attacker to spoof TCP connections.
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Another early work in this area was [99] which identified the Desynchronization

Attack against TCP. This attack, identified by manual analysis of TCP, causes the

sender and receiver to become desynchronized with respect to the location of the

cumulative acknowledgement, resulting in a connection stall.

Another important work in this area is [11] which considered the ways that a

malicious receiver could cheat TCP’s congestion control. An expert analysis of the

protocol identified and demonstrated three attacks that such a receiver could launch:

Optimistic Ack, Ack Division, and Dup Ack Spoofing. These attacks allow an end-

point or on-path attacker to increase the throughput of a target connection by mod-

ifying how it acknowledges data, either acknowledging more data than it should,

acknowledging it in many little pieces, or repeatedly acknowledging the same data.

Ack Division and Dup Ack Spoofing has since been widely mitigated by applying

Appropriate Byte Counting [122] and similar implementation-level mitigations.

Another well known set of attacks are the SYN-flood [116], Reset [13], and SYN-

Reset [3] TCP attacks. The SYN flood attack operates by overwhelming the target

with a huge number of SYN packets, preventing legitimate connections from being

established, while the Reset and SYN-Reset attacks allow a blind attacker to abruptly

terminate a target connection. They operate by brute forcing the sequence and ac-

knowledgement numbers, which is practical due to large receive window sizes.

The work in [9] and [8] introduced another pair of attacks (the Shrew and Induced

Shrew attacks) against TCP’s congestion control. These attacks offer a blind attacker

with a means to degrade the throughput of TCP connections along some target link

while expending minimal bandwidth in an attempt to avoid detection. Both of these

attacks were again identified manually by protocol experts.

A security analysis of TCP commissioned by the British Government [3] identified

two additional attacks available to a blind attacker. These are the Blind Flooding At-

tack and the Blind Throughput Reduction Attack. Both operate by sending spoofed

acknowledgements which will cause the receiver to send a duplicate acknowledgment

if the packet is out of the acceptable sequence window.
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The work in [100] identified the Ack Storm Attack where the injection of data into

a target TCP connection prevents further data transfer and generates an infinite series

of acknowledgements, as both parties respond to what they consider to be an invalid

acknowledgement with an acknowledgement. This attack was similarly identified by

expert protocol analysis.

More recently, a number of works [95–98] have demonstrated that inferring TCP

sequence numbers is feasible under certain circumstances. These works leverage some

form of side channel to enable a blind attacker to determine the sequence and ac-

knowledgement numbers needed to inject data into some target TCP connection.

They were identified by expert analysis.

7.3 NLP for Technical Domains

A variety of works have looked at applying NLP to extract information from

technical domains. DASE [69] applies NLP techniques to identify input constraints

from code comments describing file formats; regular expressions are also used to

extract command line arguments from man pages. These constraints are used to

improve test case generation for symbolic execution. Input constraints are identified

using a simple rule-based system applied to a typed dependency parse of each code

comment.

The work in [123] also applies NLP to code comments, but with the intention

of creating simplified versions of highly optimized library functions to ease static

and dynamic analyses. It attempts to extract input and output conditions from

semi-structured JavaDoc comments. The system constructs a parse tree and then

uses pattern matching to generate possible function implementations. The authors

find it necessary to process the output at several points in the process to deal with

inaccuracies introduced by NLP techniques trained on newswire.

ARSENAL [124] is designed to take requirements documents for safety-critical

systems and turn them into Linear Temporal Logic (LTL) formulas that can be auto-
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matically analyzed to ensure that desired properties hold. Again, a rule-based system

is applied to a typed dependency parse of each sentence to create a corresponding

LTL formula. A complex pre-processor, based on regular expressions, is required to

ensure that domain specific terminology is handled correctly.

Other works have looked at mobile application permissions and privacy [68, 125,

126], enhanced source code search and cross-linking [70,127], requirements document

and API checking [128–131], and trouble ticket classification [132]. For mobile applica-

tions, WHYPER [68] applied NLP to extract required permissions from descriptions

of mobile applications while [125] examined application privacy policies to extract

what the policy allows applications to do with the data they collect.

SWordNet [127] seeks to improve software code search by identifying semantically

related words, which may be domain specific. This is done by extracting semantic

pairs of words from code comments and function names. Similarly, [70] used docu-

mentation and source code to create an ontology allowing the cross-linking of software

artifacts represented in code and natural language on a semantic level.

ACRE [128] leverages NLP to extract access control rules from design documents

written in natural language. This is done using a type dependency parse tree and a

set of pattern-based rules. Pandita, et al.’s work in [129] creates formal API specifi-

cations from natural language, often fragmentary, API descriptions. Here, available

structured information, like parameter and method names can be leveraged. Simi-

larly, Doc2Spec [130] extracts formal specification rules from API specifications to

search for bugs in application code. NLP is used to identify resources used by APIs

based on an ontology.

NetSieve [132] analyzes free-form text in trouble tickets to identify problem symp-

toms and suggest resolutions. It identifies domain-specific phrases based on text

statistics and maps them into an ontology. A rule-based system then extracts

(problem, action, resolution) tuples which can be applied to new tickets.
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8 CONCLUSION

Given the importance of transport protocols, it is crucial to insure that implemen-

tations of these protocols operate securely and reliably and that we understand the

types of attacks to which these protocols are exposed. This has previously been done

via painstaking manual analysis of individual protocol implementations by network-

ing experts, which is extremely time consuming and inefficient. As a result, there

has been a steady steam of attacks against transport protocols in the literature. This

dissertation addresses this situation by providing novel techniques for automatically

searching for attacks in real, unmodified implementations of transport protocols and

by providing a better understanding of the types of attacks that are faced by next

generation transport protocols.

As a first step towards automated testing of real transport protocol implementa-

tions, we presented SNAKE, a system to automatically and broadly search for attacks

on the performance or availability of arbitrary transport protocol implementations.

SNAKE uses a novel attack injection technique to generate test cases by leveraging

the protocol’s connection state machine to focus testing on key protocol locations as

well as a new attack detection technique based on expected competition and fairness,

to detect attacks that are not as obvious as implementation crashes. To provide

completely automated testing, we also developed an NLP framework to extract a de-

scription of a protocol’s grammar automatically from a natural language specification

document. To do this we use a zero-shot learning approach that learns a similarity

function between textual phrases and protocol fields and relations, enabling adap-

tation to new protocols, and rely on the structure and linguistic regularities of the

protocol specification documents in our domain to minimize the amount of training

required.
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We have provided a concrete implementation of SNAKE and demonstrated its

effectiveness using five implementations of two transport protocols in four different

operating systems, finding 9 classes of attacks. While skilled researchers manually

analyzing implementations have previously discovered some of these attacks, SNAKE

was able to find all of these attacks automatically and without human intervention.

Additionally, we used our NLP-pipeline to automatically extract grammars from 7

protocols and found that our pipeline was capable of extracting protocol packet fields

with an F-score of 0.74 and finding and linking properties with a success rate of 66%.

We further demonstrated the value of automatic grammar extraction by applying

our pipeline to SNAKE and comparing it to using a manual grammar. We find a

reduction in the testing effort (from 901 to 819 test cases) while identifying the same

set of attacks and doing so in a fully automated manner. We, therefore, conclude that

SNAKE can significantly improve the process of testing and securing implementations

of transport protocols.

Although SNAKE finds many types of attacks, it is ineffective at finding attacks

on congestion control due to the highly complex and dynamic nature of the congestion

control algorithms. Therefore, we proposed TCPwn, a system to automatically search

for attacks on implementations of TCP congestion control. TCPwn models congestion

control as a finite state machine and uses a model-based attack strategy generation

algorithm that generates possible congestion control attacks by identifying their key

characteristics. This algorithm first generates abstract attack strategies which are

then converted into concrete attack strategies by identifying attacker actions that

cause the desired state machine transitions. These strategies are then applied to real

implementations of TCP with the help of an algorithm to infer the current congestion

control state of a sender from network traffic.

We have provided a concrete implementation of TCPwn and demonstrate its effec-

tiveness using five TCP implementations from different operating systems, finding 11

classes of attacks. Again, some of these classes of attacks have been previously discov-

ered by skilled researchers manually inspecting implementations. However, TCPwn
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finds all these attack classes automatically and without human intervention. We,

therefore, conclude that TCPwn can be applied to significantly improve the security

of TCP congestion control implementations.

Next generation transport protocols like QUIC present distinctly different attack

surfaces compared to traditional transport protocols like TCP. This stems from the

heavy use of encryption to protect user data as well as most protocol headers, render-

ing third-party attacks on congestion control and connection tear down ineffective.

Additionally, QUIC has been optimized for low latency thanks to 0-RTT connections,

which make significant use of caching. This exposes a host of new information to the

attacker. We have, therefore, studied QUIC, looking for attacks on its availability

and performance with the goal of understanding the types of attacks that impact

next generation transport protocols. Our manual investigation revealed two classes

of attacks against the availability of QUIC, both of which result from design choices

made to allow enhanced performance. We futher identified and demonstrated 5 at-

tacks within these classes compromising the availability of QUIC clients or servers

running the Chromium QUIC implementation.

Future Work. There are several compelling directions to pursue for future work.

First, automated testing is limited by the amount of information about the proto-

col that is available. Increasing this to include further information about expected

protocol behavior, the meanings of particular fields, or protocol algorithms can help

to improve testing. While we have made progress on using NLP to tackle this prob-

lem, we have made no more than an initial attempt. We would like to be able to

extract not only protocol grammars, but also state machines and algorithms as well

as to parse other sources, like blog-posts, for protocol information and possible bugs.

Second, the ability to automatically search for attacks on congestion control using

TCPwn raises interesting questions about the security of alternative congestion con-

trol algorithms like BBR [104] and TFRC [32]. In particular, we hope that these

algorithms are less susceptible to manipulation, but certainly no more so, than clas-

sic New Reno. While TCPwn provides a good basis for such a comparison, these new
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congestion control algorithms will require new, currently unknown, state inference al-

gorithms due to their significantly different state machines. Finally, the development

of automated testing for QUIC implementations seems particularly valuable given the

interest in the protocol. Our evaluation clearly identifies several classes of attacks to

which QUIC is vulnerable as well as some of the challenges to automated testing. In

particular, methods to search for attacks leveraging cached information would need

to be developed.
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