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ABSTRACT
Randomization is one of the main strategies in providing security
in moving-target-defense (MTD) systems. However, randomization
has an associated cost and estimating this cost and its impact on the
overall system is crucial to ensure adoption of the MTD strategy. In
this paper we discuss our experience in attempting to estimate the
cost of path randomization in a message transmission system that
used randomization of paths in the network. Our conclusions are
(i) the cost crucially depends on the underlying network control
technology, (ii) one can reduce this cost by better implementation,
and (iii) reducing one type of cost may result in increased costs of
a different type, for example a higher device cost. These suggest
that estimating the cost of randomization is a multivariable opti-
mization problem that requires a full understanding of the system
components.
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1 INTRODUCTION
Securing information communication systems, or what is generally
referred to as cybersecurity, has been a continuous battle between
attackers and defenders. Gene Spafford’s frequently cited quote
“The only truly secure system is one that is powered off, cast in
a block of concrete and sealed in a lead-lined room with armed
guards - and even then I have my doubts.” makes it abundantly
clear that this battle is not going to end and all the defenders can
hope for is to stay ahead of the attackers.

Cryptography provides a set of powerful algorithms and proto-
cols that can be used to provide security for networks and control-
ling access to the system. The well-known and accepted Kerckhoff’s
principle that is used in the design of a cryptographic system, rules
out the notion of “security by obscurity” that promotes hiding the
details of the cryptographic mechanisms to achieve security, and
requires all algorithmic and implementation details of the system
except the secret key, to be public and available to the attacker,
such that security depends on the secrecy of the cryptographic
key(s) only. A more recent requirement on the security of crypto-
graphic systems is security against an adversary that has access
to a quantum computer. This effectively excludes all the existing
cryptographic infrastructure of the Internet, which relies on the
hard problems of integer factorization and discrete logarithms, for
which efficient quantum algorithms are known.

Under such a stringent set of conditions, and since the designers
cannot hide the details of the system, introducing uncertainty in
the attackers’ view of the system by introducing changes to the
system configuration and physical description without relying on
intractability assumptions, becomes an attractive proposition.

Moving target defence (MTD) systems seek to increase the work
of the attackers in breaking the system by creating additional uncer-
tainty for them. Moving target (MT) approaches make the system
less static, less predictable, and add diversity to the system compo-
nents, configuration, and physical layer properties to increase the
cost of attacks.

Randomization is the primary technique for introducing un-
certainty for the attackers. Randomization not only reduces the
success probability of attacks but also, because of the changing na-
ture of the system, reduces the lifetime of the attack and the system
compromise. That is, even if the system will be compromised, it
could recover from the compromise as time passes. MT techniques
have been proposed and implemented even before the term moving
target was coined [13].

Evaluating MTD systems for dynamic networks. To evalu-
ate an MTD system one needs to consider their effectiveness and
the cost of employing them. That is, one needs to examine possible
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attacks that would be prevented by the system, and the cost of the
dynamic changes to the system that would be added in terms of
system performance measures and the cost of additional devices
and infrastructure. The effectiveness of the system can be evaluated
by developing an abstract model that captures the essential compo-
nents of the system and their interaction, modeling the adversarial
strategies, defining success measures for the adversary, and analyz-
ing the success of the specific MTD strategy against the attacker.
Evaluating the cost, that almost always accompanies an MTD strat-
egy, would be measured in terms of parameters such as response
time and/or throughput of the system or in terms of additional cost
of equipment required for the implementation of the strategy in a
realistic setting and evaluated by performing sufficient experiments
to provide a realistic cost of using the system in practice.

MTD techniques and our work. In [12], techniques are cate-
gorized into five major groups, “dynamic networks, dynamic plat-
forms, dynamic runtime environments, dynamic software, and dy-
namic data.” The focus of this paper is on dynamic networks. We
report on our work on implementing an MTD strategy that had a
theoretical analysis of its security strategy and the very attractive
promise of providing post-quantum secure communication without
relying on any intractability assumption, the challenges we faced,
and the lessons that we learned. Although our focus is on introduc-
ing dynamicity into the networks, we believe the general concepts,
observations and takeaways would have parallels in other types of
MTD systems and would be applicable to them as well.

Outline. In section 2, we introduce the MTD system and its
theoretical analysis that motivated our implementation. The system
is proved to provide post-quantum security without relying on a
secret key or intractability assumption. The system was published
in [17] and used an evaluation framework for the MTD strategy that
was proposed in [1, 9]. We motivate the need for implementation
and experiments to (i) understand the cost of employing the system
in practice to refine the model and make the results closer to a
real-life implementation, and (ii) to validate the assumptions and
evaluate performance of the system in practice.

In section 3, we argue and discuss the implementation of the
system using Software Defined Networking (SDN) [10], using a
software platform as well as a physical testbed. We show that by
improving the implementation strategy, some of initially perceived
costs (e.g., overhead of data processing and packet loss) could be
removed. However, we note that this improved implementation
came at the cost of extra assumptions on the knowledge of network
topology and traffic, as well as more sophisticated networking
infrastructure (costly switches), pointing out the trade-offs between
different cost factors.

In section 4, we reflect on our experience and offer some lessons
learned for future MTD systems.

2 PATH-HOPPING AS AN MTD STRATEGY
Securing transmission between two parties requires assumptions
on the adversary’s computational capabilities.

Shannon’s ground-breaking paper in 1949 [18] provided the first
formal model for cryptographic systems (encryption) with security
against a computationally unbounded eavesdropping adversary, and
proved information theoretic perfect secrecy of the One-Time-Pad

(OTP) encryption system. OTP however has limited use in prac-
tice because it requires a new fresh random key for each message,
and requires the key length to be the same length as the message
entropy.

Computationally secure encryption systems assume the adver-
sary’s computational power is bounded polynomially in the size
of input, and under this assumption they achieve secure commu-
nication using keys that are short and fixed in length, irrespective
of message size. Securing communication using these encryption
systems starts with a key exchange protocol that establishes a shared
key between the two parties that will provide a shared secret key
that will be used in the encryption algorithm. Secure symmetric key
encryption algorithm such as AES (Advanced Encryption Standard)
have been efficiently implemented and widely used in practice.
Today’s key exchange protocols rely on assumptions about the
hardness of mathematical problems such as Integer Factorization
and Discrete Logarithm problem. Both these problems that are the
basis of security of all key establishment protocols that are actively
used over the Internet today, have efficient solutions using quantum
algorithms [19], and so post-quantum secure key establishment has
been an active area of research and development.

2.1 Physical layer assumption for securing
transmission

Dolev, Dwork, Waarts, and Yung [5] proposed Secure Message Trans-
mission (SMT) systems that provide a model for secure commu-
nication over partially corrupted networks. The model provides
information theoretic security (i.e., assumes a computationally un-
bounded adversary) and very importantly, (i) does not require any
shared secret key and so does not need any initial key exchange
protocol and, (ii) because it does not make any assumption on
the computational power of the adversary, it will remain secure
against an adversary with access to a quantum computer. These
very desireable properties come at the cost of the requiring the
physical environment to satisfy a certain assumption, referred to as
the physical layer assumption. In particular, the assumption is that
there exists a set of 𝑛 node-disjoint paths, called wires, between
the sender and the receiver, such that only a subset of size 𝑡 of the
wires can be controlled by the adversary. The model can be seen as
the continuation of the pioneering work of Aaron Wyner [21] on
wiretap channels that used physical layer assumptions, in particu-
lar noise in the channel, for securing transmission over a (noisy)
communication channel.

2.1.1 SMT Privacy and Reliability. SMT protocols are interactive
protocols in synchronous networks, and consist of rounds where
each round includes two “phases” where in one phase one party
sends a transmission to the other. Let Π be a message transmission
protocol, 𝑀𝐴 denote the message that is selected by Alice, and
𝑀𝐵 denote the message outputted by Bob when Π is completed.
Security of SMT systems is defined using two properties of privacy
and reliability [6].

Privacy. Π is called 𝜖-private if for any two messages𝑚0,𝑚1, and
for any random choices (coin tosses) 𝑟 of the adversary, we have

Σ𝑐 | Pr[𝑉𝑖𝑒𝑤𝐴 (𝑚0, 𝑟 ) = 𝑐] − Pr[𝑉𝑖𝑒𝑤𝐴 (𝑚1, 𝑟 ) = 𝑐] | ≤ 𝜖,
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where𝑉𝑖𝑒𝑤𝐴 (𝑚𝑖 , 𝑟 ) is the adversary’s view when𝑚𝐴 =𝑚𝑖 , 𝑖 = 0, 1
is sent, the probabilities are taken over the coin flips of the honest
parties, and the sum is over all adversary’s view.

Reliability. Π is called 𝛿-reliable if, Pr(𝑀𝐴 ≠ 𝑀𝐵) ≤ 𝛿 , where
the probability is taken over the choices of𝑀𝐴 and the coin flips
of all parties.

SMT protocols are widely studied and elegant theoretical con-
structions for optimal protocols have been proposed.

2.2 SMT with Passive Adversary and Dynamic
Path Selection

Security of SMT protocols has been studied against passive, block-
ing, and Byzantine adversaries, as well as a combination of these
adversary types. Protection against active adversaries, however is
costly. It was proved that reliability requires 𝑛 ≥ 2𝑡 + 1, and perfect
security and reliability require at least two phases. The cost can be
seen in terms of high connectivity (e.g., 𝑛 ≥ 3𝑡 + 1 for 1-phase pro-
tocols with perfect secrecy and reliability), the need for interaction
(e.g., at least two phases to achieve perfect secrecy and reliability
when 𝑛 ≥ 2𝑡 + 1), and the need for complex processing (encoding
and decoding in each phase).

Considering passive adversaries significantly improves the ef-
ficiency of SMT protocols. The number of corrupted wires can be
increased to 𝑡 = 𝑛 − 1, and a one phase protocol with very efficient
encoding and decoding can be designed.

For example to encode a message 𝑚 for a set of 𝑛 wires, one
can use an (𝑛, 𝑛) secret sharing to generate a vector of 𝑛 shares,
𝑆𝑀𝑇 .𝑒𝑛𝑐 (𝑚) = 𝑆𝑆𝑛,𝑛 .𝑆ℎ𝑎𝑟𝑒 (𝑚) = (𝑆1, · · · 𝑆𝑛), and send the share
𝑆𝑖 over the wire 𝑤𝑖 . Let 𝑚 ∈ 𝑍𝑞 where 𝑞 is an integer. The en-
coder randomly selects 𝑆𝑖 ∈ 𝑍𝑞, 𝑖 = 1, · · ·𝑛 − 1, and calculates
𝑆𝑛 = 𝑚 − ∑𝑛−1

𝑖=1 𝑆𝑖 in 𝑍𝑞 . The decoding is by simply adding all
components of the vector 𝑆𝑆𝑛,𝑛 .𝑆ℎ𝑎𝑟𝑒 (𝑚). Perfect security of the
message transmission follows from perfect security of (𝑛, 𝑛) secret
sharing.

Considering passive adversaries is also well-motivated by pro-
tection against silent APT (Advanced Persistent Threat) adversaries
that stay dormant in the network with the goal of collecting infor-
mation for multistage attacks. By dividing a message into shares
and spreading the shares over multiple paths the success chance of
the APT adversary will significantly reduced.

2.2.1 Moving Target Defence (MTD) . The information rate of an
SMT system is defined as the number of bits that must be trans-
mitted to transmit a single message bit. The information of the
above encoding system for 𝑛 wires is 1/𝑛. For an adversary that
eavesdrops 𝑡 paths however, one can select a subset of 𝑡 + 1 wires
and use a (𝑡 + 1, 𝑡 + 1)-secret sharing instead. This will improve the
information rate of the SMT system to 1/(𝑡 + 1).

To further improve security and efficiency of the system against
a dynamic adversary that changes the set of their eavesdropped
paths over time, a Moving Target Defence (MTD) approach to SMT
systems was proposed [17].

The MTD system considered transmission of a sequence of mes-
sages that are sent one per time interval. While the number of
compromised wires 𝑡 was assumed to be strictly less than 𝑛, the
encoding considered a parameter 𝑘 that was not directly linked
to 𝑡 , for sharing and spreading the message in the network. The

system works as follows. For each message, a random subset 𝐺 of
𝑘 target wires are chosen, and 𝑆𝑀𝑇 .𝑒𝑛𝑐 (𝑚) = 𝑆𝑆𝑘,𝑘 .𝑆ℎ𝑎𝑟𝑒 (𝑚) is
used to generate 𝑘 shares that will be sent over the selected target
wires. The subset 𝐺 will be renewed for each message, and as long
as the elements of 𝐺 are not all within the set of adversary’s acces-
sible wires, the message will remain perfectly private. This means
that even if the attacker can capture 𝑡 ≥ 𝑘 wires, because of the
randomness in the system, the transmission may stay secure. This
allows security for the message stream to stay secure as long as the
adversary cannot capture all shares of all messages. The security
depends on the value 𝑘 , the number of shares of the message, and
𝑡 ≥ 𝑘 , the number of wires that the adversary can capture at a time.
For simplicity of analysis, 𝑡 = 𝑘 is assumed.

The analysis of the system, following the theoretical framework
of [9], models the MTD system as a stateful game between a de-
fender and an attacker that use random probabilistic strategies. The
game changes state after a pair of “actions” taken by the defender
and the attacker, and the new state is determined by the previous
state and the actions of the two players. The game has 𝑘 + 1 states,
labeled by 𝑖 ∈ {0, 1, · · · , 𝑘}, where state 𝑖 corresponds to the ad-
versary successfully finding the 𝑖’th target wires. State transitions
characterize a Markov chain, with state 𝑘 being the winning state
in which the adversary learns all the target wires that carry shares
of a message, and so the message is compromised.

The concrete analysis considered a defender that transmits one
message in each time interval, and takes action with probability
_, in which case they modify the set of target wires that are used
in the previous time interval by randomly choosing one of the
𝑘 target wires, and replacing it with another randomly selected
wire from the remaining 𝑛 − 𝑘 wires. The adversary also acts with
probability ` in each time interval, in which case they randomly
select one of the wires from those that they have not learned yet.
The probability ` depends on _ and a second parameter system 𝜏

that is the probability of being detected because of the move.

i − 1 i i + 1 i − 1 i i + 1
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Figure 1: State transition probabilities. The left diagram
shows the defender’s moves, _𝑀𝐷 , with arrows bellow and
attacker’s moves, (1 − _)𝑀𝐴), with arrows above. The right
diagram shows the combined transition matrix𝑀 = _𝑀𝐷 +
(1 − _)𝑀𝐴)

2.2.2 Security. The system evaluation uses two security measures,
(i) the expected number of times that the adversary wins in the first
𝑇 time intervals, given by 𝑇 .𝜋 (𝑘) where 𝜋 (𝑘) is the Markov chain
stationary probability of state 𝑘 , and (ii) the expected number of time
intervals until the first compromise happens, denoted by 𝐸 (1)

𝑤𝑖𝑛
. These

measures were computed using transition probability matrix of the
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Figure 2: Numerical results for 𝜋 (𝐾) as a function of _ for
𝑁 = 20 and different values of 𝐾 .

Markov chain, that is obtained using the above random strategies
of the defender and the attacker.

Graphs of the numerical values of 𝜋 (𝑘) and 𝐸 (1)
𝑤𝑖𝑛

(Figures 3 and
4,[17]) for typical choices of 𝑛, 𝑘 , and other system parameters
showed that increasing _ resulted in the decrease of 𝜋 (𝑘) and the
increase of 𝐸 (1)

𝑤𝑖𝑛
, and thus higher security. This matches the intu-

ition that faster changes in the system will “confuse” the adversary
more and so “increase” security. Figures 3 in [17] is reproduced in
Figure 2 below for completeness.

The analysis, however, abstracts out the concrete length of hop-
ping interval and allows the hopping probability to be close to one.
That is, it does not consider any cost for path-hopping. To find the
concrete security of the system, however, one needs to estimate the
actual cost of changing paths in each time interval.

3 IMPLEMENTATION AND EVALUATION
3.1 Implementation Challenges
To implement the path hopping system in practice, one needs to
map the theoretical model of “wire” and the notion of “compro-
mised wires” to real-life systems. A “wire” abstracts a network path.
A path is a sequence of links that are joined by switches. Path
hopping requires route planning, communication of the required
information to switches along the paths, and sufficient time for
switches to activate the new paths. Note that correct decoding of a
(𝑘, 𝑘) secret sharing based encoded message requires all shares to
be received by the receiver, which means that messages are likely
to be dropped due to dropped packets while communicating and
activating new paths. To determine reasonable values of _, then, we
needed to implement the system and understand the constraints of
path hopping in a real network. Our research question was:What is
the cost of hopping paths in networks, and what is the highest hopping
rate that can be used while message recovery stays at an acceptable
rate?

One significant challenge is that networks often do not contain a
high degree of path diversity. Although having more than a single
path is common, path hopping really requires larger 𝑁 ’s (e.g., 6 to
10) than are common in most networks. This is increasingly true to-
wards the edge of the network and especially at the end host, which

rarely has more than 1 or 2 NICs. As a result, our evaluation relied
on “simplistic” network topologies, like fully connected meshes.

Our most significant challenge was ensuring that shares actually
traverse disjoint paths in the network. In traditional IP-based net-
works, hosts have little to no say about how their traffic is actually
routed. In particular, IP routing is hierarchical and based on the
destination address only. This means that all traffic for a given
destination IP address will be routed in the same manner. This is at
odds with path hopping’s need to send multiple packets to a desti-
nation over different paths. In particular, it means that one cannot
convince an IP-based network to send packets to a destination IP
address over different routes. There are, however, several possible
approaches to ensuring a disjoint set of paths, including source
routing and SDN. Using source routing, the sender computes the
entire path to reach a destination, and thus can change the path for
each packet on the fly, as needed in path hopping. Source routing,
however, is not widely supported in practice for a variety of reasons
including the additional overhead of encoding path information in
the header of every packet. Software Defined Networking (SDN),
on the other hand, is a recent paradigm that enables control of the
whole network from a logically centralized controller. This con-
troller has the ability to dynamically control paths for specific flows
in the network, enabling it to construct the disjoint paths required
for path hopping.

3.2 SDN-Based Implementation
We decided to implement our system using software-defined net-
working (SDN), which enables dynamic reconfiguration of network
paths using standard APIs for communication between software-
based network controllers and network switches [8]. In SDN, the
control and data planes of the network are decoupled from each
other. The data plane is implemented on programmable switches
that are able to match on a variety of packet fields and perform
basic packet forwarding, while the control plane is implemented
through a logically centralized SDN controller that coordinates and
controls these switches. The SDN controller provides a framework
for defining, enacting, and enforcing per-flow policies in a dynamic
manner. SDN is widely adopted in practice in both wide area [7]
and datacenter networks [20], and SDN-capable switches are com-
mercially available from many vendors [15], making it relatively
easy to build an SDN network testbed to experiment with our path
hopping protocol. Using the flexible, programmatic control of the
network provided by SDN, we can provide the disjoint paths needed
for path hopping. In particular, we can observe a path hopping flow,
compute disjoint paths between the source and destination, and
install routes for each flow that follow disjoint paths through the
network, thereby ensuring secure operation of path hopping.

An important question for any path hopping design is how pack-
ets for different paths are identified so that the network can for-
ward them appropriately. If the sender and receiver actually have
𝑁 Network Interface Cards (NICs), then no explicit differentiation
is needed. However, most systems have only one or two NICs, so to
perform path hopping with 𝑁 > 2, some part of the network packet
must identify its path. In our design, we encapsulate message shares
in UDP datagrams and use UDP ports to distinguish between paths.
This works well with common OpenFlow-based SDNs [14], which
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Figure 3: Network hopping.

are limited to matching fields in Ethernet, ARP, IP, IPv6, TCP, and
UDP.

3.3 Path Hopping Approaches
We identified two distinct mechanisms by which the routing con-
straints of path hopping could be enforced in an SDN. We refer to
these different mechanisms as network hopping and host hopping
and discuss them below.
Network Hopping. In network hopping, shown in Figure 3, an
initial set of 𝐾 disjoint paths is installed in the network and the
network is continuously reconfigured throughout the course of a
path hopping flow by the SDN controller switching the set of 𝐾
paths in use. This is arguably the most SDN way to implement
path hopping. While it has the advantage of ensuring that the
path hopping happens irrespective of the software running on the
end hosts, it suffers from a number of crucial shortcomings. The
foremost of which is the fact that performing a path hop requires
reconfiguring the flow table of every switch along each of the
disjoint paths used by a path hopping flow. This need for runtime
reconfiguration of switch flow tables has the potential to introduce
transient packet losses and inconsistent routing behavior [4]. These
drawbacks are particularly limiting given that the security of a path
hopping flow is proportional to the frequency with which hopping
can take place.

Since it takes time for switches to change their configuration,
every time hopping occurs, some packets may be dropped as their
path may not be available in the network. Recall that, with network
hopping, the SDN controller establishes new paths and tears down
old paths to implement hopping. Every time hopping occurs, the
SDN controller has to execute this procedure, which takes a non-
negligible amount of time depending on the size of the network,
number of paths, and switch hardware. The result of this limitation
is that the sender cannot hop arbitrarily fast, due to the time the
SDN controller needs to setup new paths and tear down old paths.

We attempted to measure the time required for the SDN con-
troller to establish new paths and tear down old paths, but found
that it was not straightforward to measure. The reason is that after
the SDN controller sends control commands to switches, it does
not receive any feedback from switches to know when their recon-
figuration is complete. Hence, one must actively probe switches
to find out if they have updated their configuration, which does
not produce accurate results, as it takes some time to probe each
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switch. As a result, in our testbed experiments (described later), we
measured packet loss as an indirect measure of the hopping delay. If
the hopping frequency is higher than what can be achieved given
the hopping delay, then some packets are lost in the network due
to the old paths being torn down before packets reach the receiver.
Host Hopping. In host hopping, shown in Figure 4, an initial set
of 𝑁 disjoint paths is installed in the network and does not change
over the course of the flow. The act of hopping is achieved on
the hosts by changing the set, 𝐾 , of these paths used for different
shares. In this configuration, the SDN essentially configures a set of
tunnels such that shares with a particular tag are always forwarded
to their destination via a particular tunnel. The host then picks the
tags to attach to each share. This allows us to enforce the routing
constraints entailed by the path hopping system while obviating
the need for runtime reconfiguration of the network. As a result, the
source can hop essentially arbitrarily fast without suffering from
the adverse effects of path reconfiguration needed with network
hopping.

However this solution is not without drawbacks. Namely, the
installation of such tunnels results in increased consumption of flow
table space, since 𝑁 paths need to be installed instead of 𝐾 paths
with network hopping. As flow table space is in limited supply
on modern switches, sufficiently large values of 𝑁 or sufficiently
many path hopping flows can require more expensive switches
with larger flow tables.

3.4 Cost of Path Hopping
We implemented our path hopping mechanism as a module on top
of the ONOS SDN Controller [3]. The ONOS API provides a general
purpose mechanism to both query and manipulate the flow table
state of OpenFlow switches as well as carry out tasks necessary to
the implementation of path hopping such as topology discovery.
Our path hopping implementation relies on two components: 1) a
host application that is responsible for encoding/decoding opera-
tions at the sender/receiver, and 2) an SDN controller module to
configure the substrate network.
Testbed Setup. We used four Aruba 2930F switches [2] to con-
struct the substrate network in which our testbed experiments
were conducted. Each of the physical switches supports OpenFlow
version 1.3 [14] and can host up to 16 distinct OpenFlow agent
instances. From the perspective of the SDN controller, each Open-
Flow agent instance appears as a distinct OpenFlow enabled switch
in the substrate network. Each of the OpenFlow agent instances
hosted by a particular switch is assigned a subset of the physical
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Figure 5: Effect of hopping interval on packet loss.

ports present on the switch. This design allows for the construction
of diverse network topologies using relatively small amounts of
physical switching hardware. Specifically, for the experiments pre-
sented in this section, we configure the testbed to have a complete
graph topology with 10 nodes. All internal links interconnecting
the nodes in the substrate topology have 1 Gbps capacity.

Results and Discussion. To provide some insight into the hopping
intervals possible with each hopping method, we examined the the
packet loss rates for a single path hopping flowwhen either network
hopping or host hopping are used. The experiment consisted of
transferring a 20MB file from a source node to a destination node
on the SDN testbed. The path hopping flow used a message size of
256B and a 𝐾 value of 3.

The results are shown in Fig. 5. It can be observed that network
hopping results in extremely high packet loss rates with hopping
intervals under 1 second and packet loss rates that are high enough
to be severely problematic for many applications for hopping in-
tervals as long as 8 seconds. Additionally, other experiments we
performed indicate that the packet loss rate also increases with the
number of switches in the topology. Given the relationship between
the security of the system and the hopping frequency, a mechanism
which imposes such high costs in exchange for a high hopping
frequency is impractical. In contrast, we see that even for very high
hopping frequencies, host hopping does not cause any packet loss
to occur, demonstrating that the quality of service provided by path
hopping flows does not degrade as the hopping frequency of the
flow is increased.

4 REFLECTIONS
This project set out with a fairly simple goal: to measure the cost
of hopping paths in real networks, and to determine an acceptable
hopping rate. Ultimately, the project took over three years and
became a true exploratory work.

Our attempts to have a realistic estimate of the cost factors of the
MTD system in practice remained elusive. The project, however,
taught us important lessons.

Firstly, it underlined the importance of vetting the assumptions
of theoretically sound protocols in real-world settings. The net-
work model for the original protocol required that (i) paths are
truly disjoint (e.g., not implemented through overlay networks that
share nodes and links in lower network layer), and (ii) a set bound
(parameter 𝑡 ) on the adversary’s power that could be supported
by secondary evidences (e.g., monitoring the network activities).
After carefully investigating alternative networking technologies,
we concluded that providing guarantee for path disjointness is a
complicated task in traditional TCP/IP networking systems and
instead chose to focus on modern SDN-based systems that pro-
vided us with the knowledge of the physical connections between
switches that would ensure path disjointness.

Secondly, we found that the natural approach to hopping paths
in an SDN, dynamically reconfiguring the network or network hop-
ping, results in extremely poor performance. Instead, we settled
on a scheme where the paths in the network are fixed and the end
hosts dynamically switch between them. Note that both of these
approaches randomize the paths through the network. By changing
where we implement the randomness in our MTD defense we dra-
matically improved performance. We believe this is an important
observation for MTD systems.

Thirdly, although the new implementation lowered the cost in
terms of end-to-end delay, it incurred other costs. For example, it
required high end switches that could store large routing tables and
rapidly search through them. There are also other assumptions and
costs, such as the need to compute all the disjoint paths at regular
intervals, and update the routing tables at the switches. This led
us to believe that having a realistic estimate of the costs of path
hopping requires large scale implementations and experiments that
could realistically model the working of the system in practice and
under normal network traffic conditions, leaving such estimation
in practice an elusive goal.

Although we failed to achieve our initial research goals, we
ended up with a surprising discovery along the way that changed
the course of the project. We found that real networks do not obey
the properties assumed by the original network model, resulting in
a side channel. We discovered that packets from shares of multiple
consecutive messages were present in the network simultaneously.
This is perhaps obvious from a networking perspective, as packets
must travel through all switches on a given path, which takes
time. However, the theoretical underpinnings of the MTD-based
SMT system assumed that packets travel instantly from the source
to the destination and, thus attackers have only one opportunity
to capture a given packet. That turned out to be false. In reality,
attackers may have multiple opportunities to capture a given packet.
This resulted in the discovery of a side channel we called Network
Data Remenance (NDR) [16]. Our work has led to the discovery of
NDR side channels in other protocols [11].

On a final note, the project showed us the crucial role of collab-
oration of researchers from across computer science disciplines,
including cryptography, networking, and systems. Implementing
cryptographic systems that rely on physical assumptions are par-
ticularly challenging (compared to the implementation of a com-
putationally secure systems) because of possible implementation
choices, discipline specific requirements, and evaluation criteria
andmethods. The same research question finds different statements,
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different evaluation criteria, and different approaches to evaluation
in these disciplines. In physical security, we have found that collab-
oration is essential, as security is tightly related to the lower-level
network properties.

Acknowledgement. The work of Safavi-Naini is in part supported
by Natural Sciences and Engineering Research Council of Canada
and Telus Communications under Industrial Research Chair Pro-
gram.

REFERENCES
[1] Hadi Ahmadi and Reihaneh Safavi-Naini. 2013. Detection of algebraic manip-

ulation in the presence of leakage. In International Conference on Information
Theoretic Security. Springer, 238–258.

[2] Aruba Networks. 2022. ARUBA 2930F SWITCH SERIES. https://www.
arubanetworks.com/assets/ds/DS_2930FSwitchSeries.pdf accessed August 22,
2022.

[3] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,
Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.
2014. ONOS: Towards an Open, Distributed SDN OS. In ACM Workshop on Hot
Topics in Software Defined Networking.

[4] Mahdi Dolati, Ahmad Khonsari, and Majid Ghaderi. 2018. Consistent SDN Rule
Update with Reduced Number of Scheduling Rounds. In Proc. IEEE CNSM.

[5] Danny Dolev, Cynthia Dwork, Orli Waarts, and Moti Yung. 1993. Perfectly secure
message transmission. Journal of the ACM (JACM) 40, 1 (1993), 17–47.

[6] M. Franklin and R.Wright. 2000. Secure Communication in Minimal Connectivity
Models. Journal of Cryptology volume 13, 1 (2000), 9–30.

[7] C. Hong et al. 2018. B4 and After: Managing Hierarchy, Partitioning, and Asym-
metry for Availability and Scale in Google’s Software-Defined WAN. In Proc.
SIGCOMM.

[8] HPE. 2022. SDN Switches Portfolio. https://techlibrary.hpe.com/ie/en/
networking/solutions/technology/sdn/portfolio.aspx accessed July 18, 2022.

[9] Hoda Maleki, Saeed Valizadeh, William Koch, Azer Bestavros, and Marten van
Dijk. 2016. MarkovModeling ofMoving Target Defense Games. InACMWorkshop
on Moving Target Defense. 81–92.

[10] Thomas D Nadeau and Ken Gray. 2013. SDN: Software Defined Networks: an
authoritative review of network programmability technologies. " O’Reilly Media,
Inc.".

[11] Pushpraj Naik and Urbi Chatterjee. 2022. Network Data Remanence Side Channel
Attack on SPREAD, H-SPREAD and Reverse AODV. In Security, Privacy, and
Applied Cryptography Engineering. Springer, 129–147.

[12] H. Okhravi, T. Hobson, D. Bigelow, and W. Streilein. 2014. Finding Focus in the
Blur of Moving-Target Techniques. Security Privacy, IEEE 12, 2 (Mar 2014), 16–26.
https://doi.org/10.1109/MSP.2013.137

[13] HamedOkhravi, MARabe, TJMayberry,WG Leonard, TRHobson, David Bigelow,
and WW Streilein. 2013. Survey of cyber moving target techniques. Technical
Report. MIT Lincoln Laboratory.

[14] Open Networking Foundation. [n. d.]. OpenFlow Switch Specification.
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-
v1.3.5.pdf accessed August 22, 2022.

[15] Open Networking Foundation. 2022. Software-Defined Networking (SDN) Defi-
nition. https://opennetworking.org/sdn-definition/ accessed July 18, 2022.

[16] Leila Rashidi, Daniel Kostecki, Alexander James, Anthony Peterson, Majid
Ghaderi, Samuel Jero, Cristina Nita-Rotaru, Hamed Okhravi, and Reihaneh Safavi-
Naini. 2021. More than a Fair Share: Network Data Remanence Attacks against
Secret Sharing-based Schemes. In 28th Annual Network and Distributed System
Security Symposium, NDSS 2021, virtually, February 21-25, 2021. The Internet
Society.

[17] Reihaneh Safavi-Naini, Alireza Poostindouz, and Viliam Lisy. 2017. Path Hopping:
An MTD Strategy for Quantum-safe Communication. In ACM Workshop on
Moving Target Defense. 111–114.

[18] Claude E Shannon. 1949. Communication theory of secrecy systems. The Bell
system technical journal 28, 4 (1949), 656–715.

[19] Peter W. Shor. 1999. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Rev. 41, 2 (1999), 303–332.

[20] A. Singh et al. 2015. Jupiter Rising: A Decade of Clos Topologies and Centralized
Control in Google’s Datacenter Network. In Proc. SIGCOMM.

[21] A.D. Wyner. 1975. The wire-tap channel. Bell Systems Technical J. (1975).

https://www.arubanetworks.com/assets/ds/DS_2930FSwitchSeries.pdf
https://www.arubanetworks.com/assets/ds/DS_2930FSwitchSeries.pdf
https://techlibrary.hpe.com/ie/en/networking/solutions/technology/sdn/portfolio.aspx
https://techlibrary.hpe.com/ie/en/networking/solutions/technology/sdn/portfolio.aspx
https://doi.org/10.1109/MSP.2013.137
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://opennetworking.org/wp-content/uploads/2014/10/openflow-switch-v1.3.5.pdf
https://opennetworking.org/sdn-definition/

	Abstract
	1 Introduction
	2 Path-hopping as an MTD strategy
	2.1  Physical layer assumption for securing transmission
	2.1.1 SMT Privacy and Reliability

	2.2 SMT with Passive Adversary and Dynamic Path Selection
	2.2.1  Moving Target Defence (MTD) 
	2.2.2  Security


	3 Implementation and Evaluation
	3.1 Implementation Challenges
	3.2 SDN-Based Implementation
	3.3 Path Hopping Approaches
	3.4 Cost of Path Hopping

	4 Reflections
	References

