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Software security defenses are routinely broken by the persistence of both security researchers and
attackers. Hardware solutions based on tagging are emerging as a promising technique that provides
strong security guarantees (e.g., memory safety) while incurring minimal runtime overheads and
maintaining compatibility with existing codebases. Such schemes extend every word in memory
with a tag and enforce security policies across them. This paper provides a survey of existing
work on tagged architectures and describe the types of attacks such architectures aim to prevent as
well as the guarantees they provide. It highlights the main distinguishing factors among tagged
architectures and presents the diversity of designs and implementations that have been proposed.
The survey reveals several real-world challenges have been neglected relating to both security
and practical deployment. The challenges relate to the provisioning and enforcement phases of
tagged architectures, and various overheads they incur. This work identifies these challenges as
open research problems and provides suggestions for improving their security and practicality.
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1 INTRODUCTION

What some have called the “Eternal War in Memory” [107] between software defenses and
attackers seeking to exploit software has raged for over two decades now. This war features
numerous defenses developed by the academic software security community [1, 9, 18, 48, 74,
81, 83, 98], a subset of which are deployed by industry, namely W ⊕ X [83], stack canaries [24],
randomization [58], and most recently Control-Flow Integrity (CFI) [1, 12, 124]. To date,
each defense has been followed in turn by new attacks that bypass or sidestep the defense
either by tailoring the attack technique to carefully avoid triggering the invariants checked
by the defense, e.g., return-oriented programming attacks [14, 39, 59], or by exploiting
previously unknown vectors, e.g., Row Hammer [112]. This progression is further exemplified
by the memory-corruption domain, where deployed defenses such as W ⊕ X, CFI, or
randomization [58], are in turn followed by new attack classes, namely code reuse [46],
control jujutsu [39, 40], and information leaks [103, 115].
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Fig. 1. The life-cycle of a tagged program

These attacks all arise because foundational security primitives have proven impractical
in legacy software written in unsafe languages like C/C++, e.g., runtime overheads on the
order of 100% for memory safety [71, 92]. Consequently, there is renewed interest in security
primitives built into hardware [72], with their promise of low or no overhead and strong
safety guarantees.

Tagged architectures are a prominent class of hardware security primitives that augment
data and code words with tags. Figure 1 illustrates how such architectures work. The tags,
which function as the security metadata about memory, are created before the program is
loaded. Then, at runtime, the hardware enforces security policies on the tags to provide
safety guarantees, i.e., checks the tags. Such checking comes with memory, cache, and power
overheads. The benefit is that tags automate the secure and efficient management of security
metadata, which has been the Achilles heel of software defenses [50, 56, 71], as illustrated
by their performance overhead and attacks that target metadata [38].
Indeed, tagged architectures and associated policies have been developed to address the

full gamut of software-security threats [100, 107], from type and memory corruption to
integer overflows to thread safety. More concretely, tagged architectures for identifying and
tracking pointers for memory safety [34], enforcing temporal memory safety [57], tracking
type information [53], securing the stack and its return addresses [47, 90], enforcing control-
flow integrity [37], taint tracking [37], tracking the flow of user input [86, 105], generalized
information-flow tracking policies [17, 99], and a generalized pointer capability model [117]
all exist.
At a high level, all tagged architectures and the policies they support share the same

general goal: maintain metadata about the program’s state at runtime, so that order can
be brought to what some have termed the “sea of raw, teeming bits” [95] that currently
makes up memory. Once a program has been compiled to a native executable, the vast
majority of high-level semantic information about the program has been lost. Indeed, Von
Neumman architectures [10, 114] deliberately conflate code, data, and pointers, making
analysis even harder. Tags enable the processor to retain the security-critical subset of this
lost semantic information, where the definition of “security-critical” varies from architecture
to architecture, and may be user-specified.

To maintain the requisite security-critical semantic information in tags, tagged architectures
augment the memory hierarchy (e.g., main memory, caches, register files, etc.) with tag values,
and modify the processor instructions to propagate tags. Policy is enforced either by inserting
additional operations into the code using the native instructions of the machine, or by a
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separate new engine added to the processor microarchitecture. While tagged architectures
date back to the early 70’s [76], they are undergoing a renaissance in the research community
in recent years. To our knowledge, there have been 37 published efforts on tagged architectures
over the past decade whereas there were only 20 efforts in the four decades preceding that.
In this work, we provide a survey of the tagged architectures themselves, including

the threat model they address, along with the policy goal they achieve. However, for
detailed discussion of software security policies, we refer to interested readers to existing
work [100, 107]. We start by studying the historical influences and lineage of the modern
tagged architectures. We then present a taxonomy for tagged architectures based on the
important distinguishing factors we identify: configurability, Trusted Computing Base (TCB),
tag implementation, and compatibility. We further discuss the design choices and the trade-offs
involved in implementing a tagged architecture. Building off the insights from our taxonomy,
we identify challenges for tagged architectures in three broad categories: provisioning,
enforcement, and overhead. We find that most of these challenges have received little
attention from the community and little treatment in the related work.

A cross-cutting theme across the challenges we identify is that tagged architectures, despite
their promise, remain a nascent technology. Security policies have yet to be verified. The
processors supported are usually single core and in-order. To realize their potential as a
deployable security technology, tags need to handle multi-core, out-of-order processors with
features such as direct memory access (DMA). The interplay of hardware-based defenses, such
as tags, with side-channel attacks has yet to be addressed. Evaluation of tagged architectures
for performance, power, and area (PPA), while rapidly maturing, remains incomplete.

Our contributions are as follows:

∙ We study the historical influences and lineage of modern tagged architectures.
∙ We develop a taxonomy for tagged architectures and study their similarities and
differences by reviewing the developments in this area over the past five decades.

∙ We discuss the design decisions and the trade-offs involved in implementing a tagged
architecture.

∙ We pose and study the challenges faced by tagged architectures related to their security
and practicality and find that there has been little work to address these challenges.

∙ We discuss some initial approaches for addressing these challenges, including existing
hardware extensions, and illustrate that they are non-trivial open research questions.

2 TAGGED ARCHITECTURE OVERVIEW

Figure 1 illustrates the life-cycle of tags, from generation to their use at runtime. The tags
themselves are simply metadata fields associated with, e.g., words of memory or registers,
which can encode arbitrary information. On top of the tags, the architecture encodes a
set of policies that dictate how and when the tags are updated, propagated, and checked
at runtime. For instance, a memory-safety policy might create tags on object allocation,
propagate them to all pointers to the object, and check them on memory access, whereas
an information-flow, i.e., taint tracking, policy could create tags on IO, propagate them on
copy, and check that control-flow decisions operate on untainted data.
Given the recent proliferation of hardware-security techniques, including support for

bounds checking in Intel Memory Protection Extensions (MPX) [49], manipulating page-
table permissions via Intel Memory Protection Keys (MPK) [79], and enclaves such as Intel
SGX [22] and Sanctum [23], a more precise definition of tagged architectures is required. In
this paper, we say that an architecture is tagged if it:
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Fig. 2. Example of a tagged architecture enforcing a simple call-return policy.

(1) Supports metadata at the word granularity in memory,
(2) Ties tags to specific memory and/or registers, and
(3) Validates tags, producing errors for security violations.

Consequently, Intel’s recent ISA extensions do not qualify as tagged: MPX does not tie tags
to addresses; MPK is not word granular [89]; and enclave schemes (SGX) are a distinct
security paradigm with an emphasis on isolating code / data, not on maintaining and
validating metadata. Similarly, ARM’s PAC [2] only maintains metadata for a subset of
memory, pointers, and so does not qualify. However, ARM’s MTE does meet our definition
for a tagged architecture and is discussed here.

2.1 Threat Model

Tagged architectures and associated policies have been developed to address the full gamut of
software-security threats [100, 107], from type and memory corruption to integer overflows to
thread safety. However, not all tagged architectures address all threats, making it important
to distinguish between the threat model addressed by a particular tagged architecture and
the power of tags generally. For instance, some early proposals only targeted buffer overflows
(spatial memory safety), whereas tags can address threats beyond memory safety. Indeed,
tagged architectures that support user defined policies that can address arbitrary software
security issues, including application logic bugs, are becomingly increasingly popular, taking
the place of single purpose tagged architectures. The danger of such complex policies is
that they significantly expand the attack surface introduced by tags to include policy errors.
The guarantees provided by tagged architectures rely on the correctness of the policies
they enforce, meaning that policy bugs are an important new threat introduced by tagged
architectures.
Tagged architectures do not protect against attacks that target the hardware itself,

including Row Hammer [112], Spectre [55], Meltdown [62], and Glitching [102]. Instead, tags
ensure that the software layer above the hardware conforms to a given policy. Consequently,
hardware side channels, speculative execution, and bit-flipping attacks are all out of scope.
Attacks against device drivers or DMA, which are programmed by software, are in scope,
but often left as future work.

2.2 Tag-Policy Example

A tag policy is a function that takes a set of tags as input and produces either a new set of
tags or a violation, indicating that the tags break the expected invariant imposed by the
policy. To see how tags and policies work in practice, consider guaranteeing the integrity of
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return addresses to defeat classic stack-based control-flow hijacking attacks that overwrite
them. A policy could be that only call instructions can write return addresses, and only
return instructions can read them. To implement this, every return address is labeled with
a RETADDR tag by the call instruction that writes it, with the rest of the stack receiving a
default DATA tag. Instructions that write memory are updated to move the source’s tag to
the destination. Return instructions are updated by the policy to only execute if the return
address still has the RETADDR tag.

The effect of this simple return-address policy is shown in Figure 2. If an attacker attempts
to overflow a buffer to overwrite a return address, the input’s DATA tag overwrites the original
return address’s RETADDR tag. When the program attempts to return to the attacker’s payload,
the modified return instruction reads the DATA tag of the return address and determines a
violation. Note, however, that this policy does not stop all return-address attacks. The rule
propagating tags on copy could be used by an attacker to move a return address further
up the stack to the current function frame, allowing a stack unwinding attack. A stronger
policy would be to disallow all writes to a return address except by call instructions. This
issue highlights the importance of verifying that tag policies actually enforce the desired
security properties. The usual suite of tools can be used for verifying tag policies, from
formal methods to software testing techniques such as fuzzing.

3 TAG POLICIES

Existing tagged architectures have been used to explore five broad classes of policies: (i)
memory-safety policies, (ii) information-flow control (IFC) policies, (iii) dynamic information-
flow tracking (DIFT) policies, (iv) capability models, and (v) programmable architectures
that support multiple policy paradigms, i.e., are general-purpose. Memory safety and IFC
specific policies were the first frontier of modern tagged architectures (since 2000), and
specializations of them, e.g., for embedded devices, are still areas of active interest [118].
The predominant area of interest, however, has been in DIFT policies that seek to limit the
influence of user input in the program. Capability Models were revived by CHERI [117], and
have seen significant interest in the community. Competing with the rise of capability models
are general purpose tagged architectures, e.g., PUMP [37] that seek to enable all possible
tag policy paradigms. In addition to these main classes, the Typed Architectures [53] paper
uses tags to support dynamic typing of data in languages such as JavaScript. This builds
on the spirit of historical tagged architectures, such as the LISP machine [69] where the
programming language and underlying architecture were tightly coupled.

3.1 Memory Safety

Memory-safety policies prevent memory-corruption attacks, e.g., buffer overflows or use-after-
frees, which lead to the attacker controlling the application, data leaks, privilege escalation,
etc. Such architectures leverage the “fat-pointer” concept, associating bounds and version
information with pointers and data, allowing the architecture to validate that a pointer
is allowed to access a given piece of data at runtime. Exemplars include Hardbound [34],
Watchdoglite [70], and Low-fat pointers [57]. Interestingly, commercial architectures such as
the SPARC M7/M8 [75] and ARM MTE [3] generally focus on the bounds checking use case,
though they provide limited tags and so can only provide probabilistic overflow detection. It
is also possible to use the tag bits they provide for other policies, but given their focus on
bounds checking applications, we currently consider them to support memory safety policies.
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3.2 IFC

Classic IFC policies are concerned with the leaking of sensitive information, e.g., crypto
keys, or the use of privileged / classified information in non-privileged / unclassified settings.
Consequently, they tend to use tags to enforce e.g., Bell-LaPadula or Biba security models.
More recently, this has been generalized to a notion of compartmentalization [66], with the
goal of enabling least privilege for each compartment. Timber-V [118], the most recent IFC
architecture, instantiates this as secure enclaves for embedded devices.

3.3 DIFT

DIFT policies are based on policing how user input, or data derived from user input, can be
used to impact application data and control-flow. As such, they are a subset of IFC, but
have seen sufficient research interest that we discuss them separately. DIFT policies address
threats ranging from control-flow hijacking to data leaks, and even higher level policies such
as compartmentalization within an application. Indeed, there exists a substantial body of
work on formalizing security properties in terms of information flow [41]. Even memory safety
has been formalized as a subset of IFC, by formulating memory safety as a non-interference
property [31]. The effort to formalize security properties as IFC has run into issues in practice
however. In particular, using pointer tainting (a subset of DIFT) is known to be ineffective
at detecting data leaks and memory corruptions of non-control data [96], though there is
some debate about how severe these limitations are [27]. In part because of these debates,
and in part because of difficulties in scaling DIFT policies without large number of false
positives or false negatives, current research emphasis has moved away from DIFT towards
capabilities and general purpose tags.

3.4 Capabilities

The CHERI capability model has been well explored within the literature by the CHERI
team [21, 28, 116, 117, 121]. The capability paradigm has also seen broader adoption within
the security community, including notably seL4 [54]. CHERI offers two types of capabilities:
object capabilities that allow the programmer to encapsulate code and data, and memory
capabilities added by the compiler. CHERI is also the most mature tagged architecture with
academic roots, and ARM intends to fabricate CHERI boards, to be available in 2021 [19].

3.5 Programmable policies

General-purpose tags [4, 37, 101, 106] may be more flexible than the other paradigms, as
they can be interpreted according to any model, including capabilities. Common policies
include Control-Flow Integrity (CFI), Code-Pointer Integrity (CPI), Shadow Stacks, Bounds
Checking, Use-After-Free checks, and IFC like policies for, e.g., taint tracking. However,
general-purpose tags require significantly more programmer support to write specialized
policies, as well as sharing a reliance on compiler support for the initial tags. Regardless
of programming paradigm, general-purpose tag policies should be verified to show that
they enforce the desired security properties. Even if the policies themselves are amenable
to analysis [29], users are still dependent upon a large and complex TCB to determine the
initial tag set given as input to the policy at runtime.

4 HISTORICAL EVOLUTION AND INFLUENCES

Perhaps the earliest incarnation of a tagged architecture was the B5000 series machines built
by the Burroughs Large Systems Group in 1961 [76]. It was the first departure from the
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conventional von Neumann architecture in that it used a 3-bit tag to differentiate between
code and different data types. It was the first significant effort to enrich the processor with
semantic information, albeit in a limited fashion. A fascinating aspect of this design is that
even though it provided a limited form of memory safety, security was in its infancy and
many forms of attacks that the B5000 series machines prevented by virtue of its semantic
information would not be understood for another few decades. For example, a stack-based
buffer overflow is prevented in the B5000 machines because they distinguish between return
addresses and user data, but such attacks would only be studied in any meaningful depth in
the 90s [73]. The tags in the B5000 machines were primarily a way of providing ‘information
structure’ for a computer system and were utilized to provide some level of hardware fault
tolerance. The B5000 machines are also the first to use the term ‘tag’ for this extra semantic
information.
The paper by Feustel [42] in 1973 more systematically identifies the benefits of tagged

architecture, but again, they are again viewed as a way of providing more semantic information
in hardware in order to enrich and simplify programming language and operating system
designs and make them extensible. Feustel hints at the possible security advantage of tagged
architectures (called ‘protection’), but they are viewed as a way of enforcing access for shared
resources.

The LISP machine [69] circa 1985 is perhaps the first to study the security advantages of
tagged architecture in a way that resembles modern understanding of them, so this is the
point that different policy goals diverge from each other. Accordingly, we break down the
subsequent historical development of the tagged architecture into their own subsections for
the rest of this section.

Figure 3 illustrates the historical influences and the lineage of tagged architectures. Each
color denotes a policy goal: blue is memory safety, yellow is IFC, green is DIFT, and orange
is programmable. An arrow from A to B denotes A directly influencing B. A dotted line is
an indirect influence. Stripped coloring shows an improvement or specialization of a design.
Ribbon shape denotes a seminal or influential design.

4.1 Memory Safety

As mentioned, the LISP machine and its incarnation in the Symbolics 3600 [69], are among
the first to utilize tags in a way that resembles modern understanding of them. Symbolics
3600 used tags to facilitate a relocating garbage collector and enable “run-time checking
of data types” [69]. At the very least, this machine provided temporal memory safety and
could prevent some forms of variable and stack overflow depending on the actual checks
implemented on top of tags. A ‘stack overflow’ is when the stack contains too many frames
and bleeds into adjacent memory, and it should not be confused with ‘stack-based buffer
overflow’ that will be studied and exploited for control-flow hijacking later in the 90s.
Influenced by Symbolics 3600, the SPUR Lisp [125] is the next machine that used tags

to facilitate garbage collection. Unlike Symbolics 3600, the SPUR Lisp machine stored all
types of data in the same area of memory to achieve better alignment, thus it is among the
first to propose a flat address space that leverages tags to distinguish between various data
types. SPUR later influenced KCM [6] that, although it was a Prolog machine, used tags for
garbage collection in a very similar fashion. The usage of tagged architectures for memory
safety went into a winter for two decades.

The seminal work that heavily influenced modern tagged architectures for memory safety
was HardBound circa 2008 [34]. HardBound is notable form multiple perspectives. By 2008,
spatial and temporal memory safety violations were well-understood in the community [16,
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Fig. 3. Historical influences and lineage of tagged architectures categorized by their policy goals.
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73, 122] and their potential for control-hijacking attacks was observed in the wild [44]. As
such, HardBound is perhaps the first tagged architecture that is motivated by preventing
what is today understood as the broad class of memory safety bugs, and was not from the
lineage of machines that merely facilitate garbage collection. HardBound was also the first
to explicitly encode base and bounds for spatial memory safety in tag bits and provided a
concrete realization of such run-time checks.

HardBound heavily influenced low-fat pointers [57] that encode a compact version of base
and bounds metadata in tags for better performance and memory overhead, and SPARC
M7/M8 [75, 84, 88] that use smaller tags (also called ‘color’) for probabilistic overflow
detection but provide lower silicon overhead. In addition, Taxi [43, 47] specifically studies
policies that can protect against code reuse attacks. Shakti-T [67] further optimizes storage
requirements for tags by using a common memory region for all base and bounds information.
Finally, ARM MTE [3] presents one of the latest commercial incarnations of memory-safety-
focused tagged architectures influenced by HardBound, but MTE also takes some influences
from SPARC in its notion of coloring because of its small tag space (4 bits).

4.2 IFC

An early form of IFC was implemented by HEP [97] in1982 to prevent interference of
processes running in parallel on a multiprocessor computer system. Modern notions of
information-flow control and non-interference did not exist at the time, so the discussions
in HEP are all centered on enabling parallelism. M-Machine [15] is perhaps the earliest
incarnation of a tagged architecture that provides non-interference for security reasons.
Influenced by the LISP Machine’s idea of using tags to identify pointers and advocating
the idea of a flat memory space (similar to SPUR), the M-Machine uses tags to encode
what region of memory a pointer can access. M-Machine calls such pointers capabilities.
M-Machine thus provides non-interference among multiple processes that share the same
address space, while avowing the cost of context switches for permission checks. Note that
non-interference is the simplest form of IFC where no exchange of information among various
compartments (in this case, processes) are allowed.
M-Machine influenced Aries [8] that extends the flexibility of its policy by enforcing

a lattice-based IFC such as the Bell-LaPadula model (e.g., no reading from a higher
classification and no writing to a lower classification).
An independent work in this area, XOM [61], leveraged encryption to protect data (and

code) in memory from interference from other processes. Tags are used to identify the
compartment of data at runtime. XOM allows sharing of data among processes by explicit
key sharing, thus it enforces a richer IFC policy that allows sharing.
Another influential design in this domain was AEGIS [104]. Itself influenced by XOM,

AEGIS was the first to develop the idea of protecting a part of an application in its secure
mode and removing interferences with that part. In modern terminology, this is called an
enclave. AEGIS used tagging to prevent interference in on-chip caches, but it did not allow
shared memory. AEGIS influenced work such as RIFLE [111] that enforced a lattice-based
IFC, GLIFT [110] that extends tags to all logical gates in the machine (instead of just data
path), and execution leases [109] that improve the flexibility and performance of GLIFT
by granting control of a portion of the machine to untrusted code for a fixed amount of
time. Shioya et al. optimize the memory and latency overhead of a design like RIFLE [93].
DataSafe [17] also implements a protected enclave, but provides a more expressive policy and
automatically transforms binaries without requiring source code; it is thus an improvement
over a design like RIFLE.
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One of the latest and most mature designs in the IFC lineage is HyperFlow [41]. HyperFlow
has direct inspirations from execution leases and GLIFT and perhaps indirect influences
from many other previous IFC work such as M-Machine and AEGIS. HyperFlow is an
expressive IFC implemented on top of a complete RISC-V processor and is capable of
enforcing arbitrary lattice-based policies. TIMBER-V [118] implements AEGIS-like enclaves
for embedded systems on top of RISC-V and provides efficient inter-domain communication.
TIMBER-V leverages tags to enforce domain isolation rather than enforcing a generic IFC
policy the way HyperFlow does.

4.3 DIFT

Tagged architectures that enforce DIFT have not only seen substantial research particularly
in the period between 2004 to 2018, but also they have had many influences on other designs
for policy goals, speficially memory safety and IFC.
The seminal work in this area was the DIFT [105] paper by Suh et al. that not only

defines the concept of DIFT but also illustrates how various security policies can be realized
as a DIFT policy and implements a tagged architecture for enforcing it. DIFT might have
had influences from early tagged architecture designs, but its ideas sparked a new line of
research for tagged architectures, sufficiently different from IFC and other security goals
that we consider it the inception of that domain.

Minos [25] developed in parallel with DIFT enforces Biba’s low water-mark integrity policy
on a tagged version of Pentium emulator. Although it is a form of dynamic information-flow
tracking, Minos’s policy is fixed and not as expressive as the work by Suh et al.. Minos
influenced SecureBit [86] that leverages a DIFT-like policy to prevent buffer overflows to
control data.
DIFT work by Suh et al. and Minos influenced Raksha [26] that implemented a tagged

SPARC FPGA to enforce flexible and programmable DIFT policies. FlexiTaint [113] gen-
eralizes the propagation rules in a design like Raksha. DIFT co-processor [52] simplifies
hardware design and verification for a design like Raksha by enforcing the policy in a
co-processor. Loki [123], influenced by Mondriaan [119, 120], DIFT [105], and RIFLE [26]
enforces application separation without the need to trust the OS. It also supports a large
number of protection domains. SIFT [78] implements a low-overhead version of DIFT by
leveraging a separate thread to perform taint propagation and policy checking. Harmoni [33]
optimizes the efficiency of enforcing DIFT by implementing a hardware accelerator.

A major advancement in this area was achieved by HDFI [99]. Influenced by Suh et al. [105]
and Minos [25], HDFI implements an full-blown RISC-V processor on FPGA capable of
enforcing a rich set of DIFT policies. It also leverages compiler augmentation to emit DIFT
instructions. TMDFI [63] improves upon HDFI by having larger tags. Finally, D-RI5CY [80]
presents a low-overhead version of DIFT for IoT applications.

4.4 Programmable

Programmable tagged architectures provide a multi-purpose tag logic that can be used to
enforce the other specific policies described above: memory safety, IFC, and DIFT. Although
rare in early years, programmable tagged architectures have seen a major surge in recent
years, particularly after 2012.

The seminal work in this domain was Mondriaan [119, 120] that influenced many modern
designs. Mondriaan implements a fine-grained memory protection mechanism that tags
individual words in memory with permission bits. Efficient lookup and enforcement of
permissions along with cross-domain accesses secured by ‘gates’ allow Mondriaan to enforce
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a rich and programmable set of policies. SECTAG [4] implements a similar but more limited
design that was only validated in simulation. Influenced by Mondriaan and HardBound,
TIARA [94] specifically enforces programmable policies to minimize the privilege in the
operating system. FlexCore [32] was influenced by Mondriaan and DIFT and used a design
that combines an FPGA fabric with ASIC to enforce a programmable policy efficiently.
A distinct work in this domain was the SAFE processor [5, 36] that was influenced by

TIARA and Aries. SAFE not only implemented an efficient and programmable tagged
architecture, but also it was notable in being one of the first efforts to formally verify its tag
policy. The SAFE processor later evolved into a significantly more feature-rich and flexible
tagged architecture called DOVER [106]. DOVER is notable in 1) being among the first to
have a domain-specific language for policies that automatically translate to tag rules and
2) utilizing a separate core (called PEX) for policy enforcement. This is unlike many past
and follow-on efforts that use ‘in-pipeline’ modifications to enforce the policy. DOVER is
capable of enforcing a rich set of programmable policies.
A major advancement in the area of programmable tagged architecture and one that

influenced almost every subsequent work was CHERI [116, 117, 121]. CHERI itself was
influenced by the M-Machine and its notion of capabilities. CHERI implements a tagged
architecture to keep track of capabilities, a set of compiler transformations to implement
pointers as capabilities, and a rich software stack that leverages such capabilities to implement
a wide range of security policies from memory safety to high-level application policies.
CHERI and its compoenents are described in a series of papers [19, 21, 28, 116, 117, 121]
and represents an influential portion of the literature on tagged architecture. CHERI is
under active development and transition to practice at the time of writing this survey.

CHERI inspired LowRISC [64, 101], which is a practical implementation of programmable
tags on the Rocket RISC-V chip, but its implementation seems to be incomplete at the this
time.

Another work that took inspiration from Aries, FlexiTaint, and Harmoni was PUMP [30,
35, 37]. PUMP also provides an expressive and general-purpose tagged processor capable of
enforcing programmable policies ranging from memory safety to IFC and DIFT. PUMP is
notable in that, similar to SAFE, it performs formal verification on tag policy [30]. We will
discuss the implications of complex tag policies for their correctness in Section 8. Verifications
such as those performed by PUMP provide more assurance about tag correctness, and with
the growing complexity of tag policies, they seem to be an essential aspect of tagged
architectures in the future. Lastly, SDMP [90] specializes PUMP for stack protection using
various policies.

5 TAXONOMY

For each architecture, we present its policy goal along with a classification of its imple-
mentation in a four-dimensional taxonomy for tagged architectures: Configurability, Tag
Implementation, Trusted Computing Base (TCB), and Compatibility. These four dimensions
highlight the important differences among tagged architectures in terms of the policies that
they support and the cost of deploying them. In particular, the architecture’s implementation
and its Configurability go hand in hand and directly affect what policies can be supported.
As the motivation for tagged architectures is to provide hardware acceleration for security
policies, policy support is a critical factor when comparing them. Detailing the TCB pro-
vides a nuanced view of the security guarantees possible from a tagged architecture, while
Compatibility looks at other barriers to adoption. We present a summary of all architectures
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we examine in Table 1. Here we provide a brief of overview each dimension, with further
details in the following four sections.

Configurability. Tagged architectures can support a fixed policy, a limited set of policies, or
be fully programmable. Single policy architectures are simpler and easier to implement,
whereas fully programmable architectures offer flexible protection against a wider
ranger of threats.

Tag Implementation. The key components of a tagged architecture’s implementation are
how big the tags are, how the tags are managed, and how they are stored. In turn,
these determine the type of policies that can be supported, and at what runtime and
memory overhead.

Trusted Computing Base. The TCB of a tagged architecture necessarily includes the
processor, and depending upon the architecture may also extend to the compiler,
bootloader, operating system, and main memory.

Compatibility. Tagged architectures fall into several categories with respect to compat-
ibility with existing code bases: no compatibility, binary compatibility, and source
compatibility. This needs to consider not only whether binaries will run but whether
they will receive security benefits.

5.1 Configurability

In support of their policy goal, tag architectures can either be completely fixed and non-
configurable, or expose a variety of interfaces to policy designers. Non-configurable ar-
chitectures support a fixed policy that is “baked in” to the silicon [6, 8, 25, 47, 53,
61, 67, 69, 76, 86, 93, 97, 104, 109, 110, 118, 121, 125]. These designs were common in
early tagged architectures, and still manifest as a lightweight means for enforcing poli-
cies. Of the configurable architectures, we identify two different classes of configurability,
directly analogous to whether the architecture support a programmable policy or not.
Where the architecture does not support a programmable policy, the tags are less config-
urable [26, 41, 52, 63, 78, 80, 111]. Recently, the trend is towards fully programmable tagged
architectures [17, 32, 33, 36, 37, 90, 95, 101, 106, 113].

Non-Configurable. Fixed policies are attractive because they are invariant across all
deployments of the system, so one can reasonably make security claims for all code running
on the processor. The disadvantage is that they are inflexible – their security model cannot
evolve to address new threats. In the 70’s and 80’s, the original tagged architectures were
invented to provide native support for languages such as LISP or Prolog [6, 69, 125], or
unique general-purpose machines that aimed to disambiguate code/data/pointers [76, 97].
The next wave of tagged architectures, starting in the 2000’s, were explicitly security focused,
with interest in IFC [8, 47, 86, 93, 104, 109, 110]. Along with interest in taint tracking
via IFC came interest in data integrity/confidentiality policies such as Biba and Bell La
Padula [25], and enclaves that were resistant to code leakage (and hence software piracy) [61].
The most recent development in fixed policies is a return to language support, this time for
dynamically typed languages by introducing new ISA primitives that are aware of the type
of the data at runtime and execute correctly [53].

Note that most tagged architectures that focus on memory safety [15, 34, 57, 67, 84, 120]
are not programmable, and typically rely on the tag to distinguish pointers and data,
Hardbound [34] is a prominent example of this. Further, such architectures are comparatively
rare and may be incompatible with common C paradigms such as out-of-bounds pointers.
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Table 1. Tagged architectures with their design dimensions sorted by the publication year. Policy
Goal: * – spatial memory safety only, † – Optimization work rather than a new architecture. Tag Impl:
W – widened memory, D – disjoint memory, PT – page-table-like structure, LT – lookup table structure,
E – memory encrypted with unique key for each tag. TCB: C – compiler, B – bootloader, P – processor,
K – OS kernel, M – main memory.

Architecture YearPolicy Goal Config? Tag Impl TCB Compat.Evaluation

Size

(bits)

MgmtStoreC B P K M

Timber [118] 2019 IFC No 2 ISA W      Source Simulation

ARM MTE [3] 2019 Memory

Safety

Yes 4 ISA N/A      Binary ASIC

D-RI5CY [80] 2018 DIFT Yes 1 API W      Binary FPGA

TMDFI [63] 2018 DIFT Yes 8 ISA W      Source Simulation

HyperFlow [41] 2018 IFC Yes 8 ISA PT   None FPGA

SDMP [90] 2018 Memory

Safety

Yes 11 API W     Source Simulation

Typed Arch. [53] 2017 N/A No 9 ISA D      Source FPGA

Dover [106] 2017 Programmable Yes Large API LT     Source FPGA

Shakti-T [67] 2017 Memory

Safety†
No 1 ISA W      Source FPGA

HDFI [99] 2016 DIFT No 1 ISA D      Source FPGA

lowRISC [64, 101] 2015 Programmable Yes 4 ISA D      Source FPGA

Taxi [43, 47] 2015 Memory

Safety

No 8 Auto D     Binary Simulation

PUMP [30, 35, 37] 2014 Programmable Yes 32 API LT     Source Simulation

CHERI

[116, 117, 121]

2014 Programmable No 1 Auto W    Source FPGA

SPARC M7

[75, 84, 88]

2014 Memory

Safety

No 4 Auto D     Binary ASIC

Low-Fat Pointers
[57]

2013 Memory
Safety

No 8 Auto W     None FPGA

SAFE [5, 36] 2012 Programmable Yes 59 API W     None FPGA

DataSafe [17] 2012 IFC Yes 10 Auto D   Binary Simulation

Harmoni [33] 2012 DIFT Yes ≤32 API D     Binary FPGA

Shioya, et al. [93] 2011 IFC† Yes 12 API PT     Binary Simulation

SIFT [78] 2011 DIFT Yes 32 API D     Binary Simulation

FlexCore [32] 2010 Programmable† Yes Large API D      Source FPGA

Execution

Leases [109]

2009 IFC No 1 Auto D      None FPGA

GLIFT [110] 2009 IFC No 1 Auto D   None FPGA

TIARA [94] 2009 Programmable Yes 32 API D   None Theoretical

DIFT Coprocessor
[52]

2009 DIFT† Yes 4 API D     Binary FPGA

HardBound [34] 2008 Memory
Safety*

No 1 Auto D      Binary Simulation

Loki [123] 2008 DIFT No 32 Auto PT     None FPGA

FlexiTaint [113] 2008 DIFT Yes Small API D     Binary Simulation

SECTAG [4] 2007 Programmable Yes Small Auto D      Source Simulation

Raksha [26] 2007 DIFT Yes 4 API W     Binary FPGA

SecureBit [86] 2006 DIFT No 1 Auto W     Binary Emulation

Minos [25] 2004 DIFT No 1 Auto D     Binary Emulation

DIFT [105] 2004 DIFT No 1 Auto PT     Binary Emulation

RIFLE [111] 2004 IFC Yes Large Auto D     Binary Simulation

AEGIS [104] 2003 IFC No Large Auto E   None Simulation

Mondriaan

[119, 120]

2002 Programmable No 2 ISA PT     Binary Simulation

Aries [8] 2001 IFC No Large Auto W     None Theoretical

XOM [61] 2000 IFC No Large Auto E  Binary Simulation

M-Machine [15] 1994 IFC No 2 Auto W     None ASIC

KCM [6] 1989 Memory
Safety

No 32 Auto D   None ASIC

SPUR [125] 1987 Memory
Safety

No 8 Auto D     None Simulation

Lisp Machine [69] 1985 Memory

Safety

No 4-8 Auto W   None ASIC

HEP [97] 1982 IFC No 2 Auto W   None ASIC

Burroughs [76] 1973 Memory

Safety

No 3 Auto W   None ASIC
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An interesting corner case with non-configurable tags is CHERI [121]. CHERI’s capabilities
represent a fully programmable (within the capability paradigm) policy system, however the
capability policy system is not reliant on the underlying tags. CHERI utilizes one bit tags
to integrity protect its capabilities, and for no other purpose. Consequently, the tags are
non-configurable despite CHERI’s programmable policy interface.

Partially Configurable. Partially configurable architectures are user controlled, but
only within their paradigm. For instance, IFC policies are all very similar, with most of the
differences coming from how they are implemented in hardware. From a policy perspective,
the key difference is how many flows can be tracked at once, with later implementations
supporting four or more separate flows [26, 41, 52, 63, 78, 80, 111]. Consequently, flows from
keyboard vs. network input can be distinguished, or multiple kinds of sensitive data tracked.
Another distinguishing factor between IFC centric tagged architectures is whether they have
fixed propagation rules, or present ISA extensions / control mechanisms that allow users to
choose their own [26, 41, 63, 78, 80, 111].

Fully Configurable. Programmable tagged architectures support different programming
paradigms, including user-specified tags [37] or generalized IFC [33]. PUMP [37] is an
archetypal tagged architecture in this category. It provides infinite tags, whose semantics
are entirely programmable within the domain specific language provided for tag policies.
Unlike partially configurable architectures, there are no inherent limitations on how tags
can be used, or the information they can store.
FlexCore [32] takes this even further and uses an FPGA as a policy co-processor, and

reflashes it at boot with the desired tagged architecture. This allows it to mix the benefits
of having a dedicated policy in silicon with the flexibility benefits of full programmability as
it is infinitely re-configurable.

5.2 Tag Implementation

There are many design considerations for tagged architectures that affect size, weight, and
power (SWaP) of the chip, including how to integrate tags into memory, where/when to do
the extra tag-policy processing required, and how large to make the tags. Here we focus on
implementation details that are noticeable from software, or have policy ramifications. In
particular, we examine three implementation decisions: (i) whether tags are stored inline or
disjoint, (ii) how tags are managed, and (iii) how large the tags are.

Tag Storage. Tags can be stored principally in one of two ways. In the first scheme, tags
can manifest as register and cache extensions [6, 26, 34, 52, 67, 69, 69, 80, 80, 86, 97, 101,
105, 111, 118, 125], allowing them to be stored inline with the memory objects they reference,
and flow through the memory hierarchy into registers. Doing so presents two challenges:
(i) extensive modifications are required throughout the architecture, and (ii) tags are not
isolated and are thus more vulnerable to attacker modification. The alternative, and currently
dominant approach, is to store tags disjointly [4, 32, 33, 37, 47, 93, 106, 109, 110, 113, 121].
This separation usually happens at the register and L1 cache level, before being merged in
L2. However, architectures with tag co-processors can offer completely separate tag-cache
systems, though they are currently stored on the same physical memory. Given recent
hardware-based attacks (e.g., [55, 62]), fully separating tags (even within main memory)
and putting them on a dedicated processor has become a security imperative.

Management. Tags can be managed in three ways: automatically by the hardware,
explicitly via ISA extensions, or through a programmable API interface separate from the
application. Automatic management is the most common case, particularly for architectures
whose tags are not programmable. Recent programmable architectures, however, do not
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rely on automatic tag management. ISA extensions [41, 53, 63, 67, 99, 101, 118, 120] give
the programmer the explicit ability to interact with the tags and perform policy checks. In
contrast, API management schemes [26, 32, 33, 37, 78, 80, 90, 93, 95, 105, 106, 113] have
an interface for setting tag propagation and policy rules, for instance via a configuration
register [80], software defined policies [37], or even changing FPGA configuration [32].
Whether the flexibility of having tags be explicitly manipulated by ISA extensions adds
additional attack surface compared to API schemes, where the tags are typically only
indirectly modified, is an open research question.

Tag Size. Tags come in three size classes: 1 bit, “few” bits, and unlimited bits. The
second size class is deliberately ill defined; examples tend to cluster around 4-, 32-, or 64-bit
tags depending on the targeted policy and when the architecture was developed. One bit
architectures were prominent historically, and used for simple taint tracking IFC policies, as
they had minimal cost in terms of extra storage requirements. With the advent of disjoint
tag storage and modern fully programmable policies, the trend has been towards unlimited
tags, or capabilities that can encode arbitrary amounts of information.

5.3 Trusted Computing Base

An important dimension to consider when examining tagged architectures is their Trusted
Computing Bases (TCBs), i.e., the set of components that the system assumes to be correct
in order to provide its security guarantees. In this work, we focus on the TCB for enforcing
policy with tags. A deployed system might have a larger TCB to ensure, for example, that the
correct applications are loaded and run properly. TCB components for different architectures
include the: compiler, processor, bootloader, operating system, and main memory. All tagged
architectures include the processor in their TCB. We find three common patterns of inclusion
in the TCB for other components. The first trusts the processor, bootloader, kernel, and
main memory while the second adds the compiler to these four components. To compensate
for the larger TCB, these systems are typically more programmable and offer the ability
to enforce much richer policies. The final type trusts only the processor and memory and
typically provides some variety of simple IFC policy.

Compiler. The compiler is included in the TCB for a tagged architecture if semantic
information that can only be recovered from source code is required to enforce the tag policy.
Tagged architectures that enforce DIFT or IFC policies, e.g., Loki [123] and DIFT [105],
typically do not require compiler support. Instead, they track information from a defined
set of sources, e.g., system calls, and monitor how such data is used to detect data leaks
or control-flow hijacking. Other architectures require compiler support either because they
introduce new instructions that manipulate and check tags [4, 53, 63, 80, 99, 117] or because
they rely on the compiler to create the initial state of tags in the binary [37, 90, 106]. Systems
in the first group rely on the compiler to correctly insert tag manipulation and checking
instructions. Those in the second group rely on the compiler to generate an initial set of
tags that will be applied to the binary on load. This enables policies about stack usage [90],
control flow [37], and memory safety [30] that leverage information available to the compiler
that is lost during compilation, trading off increased TCB for policy richness. Note that even
if such policies rely on code annotations instead of static analysis the compiler would still be
responsible for generating the correct tags from the annotations and so remain in the TCB.

Processor. One component in the TCB common to all tagged architectures is the
processor. One element of the processor that deserves particular discussion is the Memory
Management Unit (MMU), which provides simple read, write, and execute permissions on a
page granularity. As such, it provides very similar, although much more limited, functionality
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to a tagged architecture. Tagged architectures, therefore, have to make choices about whether
and how to interact with the MMU. Most works on tagged architectures place tags on physical
memory, enabling interaction with an MMU if one exists, but are otherwise ambivalent
about the existence of an MMU at all [35, 47, 90, 99, 106]. However, some architectures
such as CHERI [121], Low-Fat Pointers [57], and Mondriaan [119] intentionally combine
the MMU with tags, leveraging the MMU for course-grained isolation or compatibility with
existing software. For further comparisons between the memory protections afforded by
modern MMUs, CHERI, and other schemes, we refer the reader to [121].

OS. The OS and system services, such as allocation, are also frequently trusted by tagged
architectures. This may be because the OS must configure policy and mark information
to be tracked [33, 36, 52, 57, 78, 88] or because the OS has the potential to arbitrarily
manipulate the tag state and must be trusted not to do so [47, 53, 63, 93, 99, 101]. A good
example of the first case is DIFT [105], which is designed to perform IFC to ensure that
user input never directly influences control flow. To do so, it relies on the OS marking
untrusted input. Other IFC/DIFT systems such as FlexiTaint [113] require the OS to
configure tag propagation and checking. M7 [84, 88] represents a final example of this case.
It implements a memory-safety policy by replacing malloc with a trusted allocator and
recording metadata in the tags of allocations and pointers. TMDFI [63] is an example of the
second case. Because tags must be checked and propagated explicitly with instructions, the
kernel must be trusted. Architectures that trust the compiler also frequently end up in this
case, due to a need to trust the OS loader to not modify initial tags or instructions needed
to manipulate tags [53, 63, 80, 101, 118]. There are a few interesting exceptions, including
Dover [106], PUMP [37], and CHERI [117, 121]. Dover and PUMP do not need to trust
the OS because the bootloader actually loads the initial tags into the system along with
the kernel; once started software cannot modify tags except as controlled by policy. This
places the bootloader, but not the OS, in the TCB. CHERI is a capability based system
that, among other things, can replace pointers with capabilities. Tags, however, are used
merely to distinguish capabilities from normal memory, and this distinction is enforced by in
the processor. As a result, CHERI does not require trusting the OS to correctly manipulate
tags.

Bootloader. Many tagged architectures also require trusting the system bootloader. This
is either because they include the OS in their TCB and rely on the bootloader to correctly
start the trusted OS [33, 36, 47, 52, 53, 57, 63, 78, 88, 93, 99, 101] or because they rely on
the bootloader to setup initial compiler-generated tags correctly [37, 90, 106]. This second
case is the most interesting. In these systems, tags are inaccessible to a running system
and are checked and manipulated by the processor according to a programmable policy.
During boot, the tag policy and initial tag state is configured by the bootloader, placing the
bootloader in the TCB.

Memory. A final element common to the TCB’s of many tagged architectures is main
memory. Most tagged architectures store tags in main memory and implicitly trust that tags
will be stored and fetched from main memory correctly. The only two exceptions we know of
are XOM [61] and AEGIS [104], both of which encrypt all data in main memory.

5.4 Compatibility

Tagged architectures and the policies they support leverage semantic information at differ-
ent levels of the software stack. This in turn affects compatibility with existing software.
Specifically, tagged architectures fall into three categories with respect to compatibility with
existing code bases: no compatibility, binary compatibility, and source compatibility.
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No Compatibility. Systems with no compatibility require manual source changes, either
because they provide additional security controls beyond tags [41, 104, 123] or because they
are theoretical clean-slate exercises [5, 36, 94, 109, 110]. HyperFlow [41] provides timing
guarantees and IFC that goes beyond tags and requires source changes as compilers lack the
semantic information to correctly use its ISA extensions to enforce these properties without
developer input. TIARA [94] and SAFE [36] are examples of the second case. Both of these
are clean-slate designs that develop radically different ISAs and may lack standard features
such as virtual memory. The Gate Level Information-Flow Tracking (GLIFT) [109, 110]
papers are also radical clean slate exercises that completely re-envision micro-architectures,
and programming paradigms, in order to have fully precise information-flow tracking at
the gate level. Consequently, even though realized in FPGA with custom microbenchmarks,
they are effectively theoretical exercises.

Binary Compatibility. At the other end of the spectrum are systems that support
existing binaries without modification or recompilation. These systems usually provide some
form of IFC or DIFT [17, 25, 26, 47, 52, 78, 80, 86, 93, 105] or tag memory allocations and
check accesses [34, 84, 88]. Existing binaries do not have to be modified for such systems
because the information they require is a tractable binary static-analysis problem, e.g.,
sources of user input for DIFT policies or heap allocations via malloc for bounds-checking
policies. Note, however, that it is the required analysis not the policy that determines
compatibility. For instance, Mondriaan [119] is a binary-compatible system that provides
neither IFC nor bounds checking, but instead uses tags to provide traditional memory
permissions (read, write, execute) at the word granularity for multiple users. Static binary
rewriting is in scope for binary-compatible solutions [63, 99], though no prototype to date
has demonstrated this.

Source Compatibility. Between these extremes exist a variety of systems that require
recompilation to realize the protection enabled by the architecture. Unlike binary-compatible
systems, which are limited by the information binary analysis can recover, these systems offer
more flexibility, which allows a broader range of policies and designs. These systems typically
introduce additional ISA instructions [4, 53, 63, 67, 99, 101, 118] or involve the compiler in
the process of specifying the desired policy [37, 90, 106, 117]. HDFI [99] provides building
blocks for programmers to construct the desired policy, and introduces new instructions to use
these building blocks, thus requiring recompilation. PUMP [37] and CHERI [117] are notable
examples of the second case – architectures that compile a programmer-defined policy into the
binary. PUMP [37] implements a highly flexible tag engine that can compute arbitrary policies
over instruction and operand tags. Semantic information from the source code is usually
required to set the initial state of the tags for these policies. The CHERI [117] capability
system includes a compiler that replaces all pointers with capabilities. A compatibility mode
exists that only converts specified pointers to enable backward compatibility with existing
binary code. The CHERI project has succeeded in recompiling the whole FreeBSD userspace
with their system [28].

We have discussed compatibility so far in terms of what is required to realize the improved
security offered by a tagged architecture. A related question is whether legacy binaries can
be run with no protections. We believe that all of the systems we have classified as source-
compatible (i.e., requiring recompilation) support unmodified binaries at least for userspace
programs, but those binaries will get no security benefits from the tagged architecture.
This definitely includes TDMFI [63], SDMP [90], HDFI [99], Dover [106], PUMP [37], and
CHERI [121].
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Fig. 4. Strongest trade-offs involved in tagged architecture designs.

Another important compatibility question is whether protected programs are compatible
with unmodified libraries and vice versa. A few architectures successfully support this,
notably HyperFlow [41], CHERI [117], and DataSafe [17], but most have not even considered
it and do not appear likely to support it. See further discussion of this open challenge in
Section 8.

6 DESIGN CHOICES AND TRADE-OFFS

In this section, we discuss the major design choices and trade-offs involved in a tagged
architecture. We note that a tagged architecture is a complex system, and as such, every
design choice should really be viewed holistically and it may impact all other dimensions of
the design. Here, however, we emphasize some of the strongest trade-offs that we observe in
the community to shine light on these choices. We also note that all of these design choices
impact the overheads of a tagged architecture (silicon, power, runtime, and memory), which
we discuss in-depth in Section 8, so we do not discuss them in this section.

Figure 4 illustrates the strongest tradeoffs in a tagged architecture design. An arrow denotes
a strong trade-off whereas no arrow between two design choices denotes no dependence or
weak dependence on some specific designs only.

The design choice that has the strongest impact on all other choices is the TCB. There is
a tradeoff between the TCB and the compatibility of a design because if the design needs
to be source compatible, it often uses the compiler to insert instructions for checking or
manipulating the tags [4, 53, 63, 80, 99, 117], which puts the compiler in the TCB. On the
other hand, binary compatible designs and those with no compatibility can avoid putting
the compiler in the TCB [5, 36, 41, 43, 47, 57, 75, 84, 88].
The tag store and the TCB are also related. If the tags are stored in widened memory,

disjoint memory, a page-table-like structure, or a lookup table structure (W, D, PT, or LT
in Table 1, respectively), the memory is necessarily part of the TCB. On the other hand, if
the tags are stored in encrypted memory (E in Table 1), the memory is not part of the TCB.
Tag management also impacts the size of the TCB. The logic that is used to manage

tags (whether automatically, by ISA, or by API) is necessarily part of the TCB. This can
be part of the kernel, the bootloader, and/or parts of the processor, depending on the
implementation. The more complex this logic is, the larger that part of the TCB becomes.

Configurability also impacts the TCB although this impact is more design-specific. When
the tagged architecture is non-configurable, the parts of the system that are used for
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configuration purposes could be removed from the TCB although because of the other
aspects of the design they may still be part of the TCB. In other words, when a tagged
architecture is fully or partially configurable and relies on certain system parts (e.g., compiler,
bootloader, or kernel) for such configuration, those system parts are often included in the
TCB, but when the architecture is non-configurable, those parts may or may not be part
of the TCB depending on the oethr aspects of the design. For example, GLIFT [110]
and XOM [61] are non-configurable and they do not have the compiler, the kernel, or
the bootloader in their TCB, while HDFI [99] has all of them in its TCB despite being
non-configurable due to the policy that it enforces.
Configurability is also related to tag management. Traditionally, tagged architectures

that were non-configurable had automatic tag management [34, 57, 84, 105, 123] and those
that are fully configurable either use ISA extensions or API management [41, 53, 63, 67,
99, 101, 118, 120]. This is primarily because non-configurable architectures enforce a fixed
policy in hardware, so it is easy for them to implement the management logic automatically.
In contrast, partially or fully configurable architectures need to expose some interface to
the programmer to configure them (via ISA extensions or an API), so they can rarely be
automated. Exceptions do exist when the policy is limited in scope (e.g., enclave isolation in
DataSafe [17]).

Finally, tag size impacts tag storage. Small tags that are used to distinguish special data
(e.g., capabilities or enclave designators) from other code and data in memory are often stored
by widening the memory. CHERI [121], Timber-V [118], and M-Machine [15] are examples of
such a design. Those that store metadata directly in tags, similar to HardBound [34], SPARC
M7 [75, 84, 88], or Taxi [43, 47], often do so in disjoint memory. Additionally, those that
have large, configurable tags, often store them in a disjoint memory region, a page-table-like
structure, or a lookup table [30, 32, 35, 37, 106]. This is because small tags to distinguish
special data are easier to fully handle within the main pipeline, while large configurable tags
often require a complex policy engine to handle, so storing the tags disjointly or in separate
tables may be desirable to implement such an engine.

7 EVALUATION

In evaluating tagged architectures, the focus is usually on the overhead introduced by the
architecture and, for architectures that define a particular policy, the effectiveness of the
policy being enforced. Historically, the evaluation of tagged architectures has focused on
simulators and emulators due to the effort and cost involved in creating real hardware.
However, over time there has been an increasing expectation of microarchitectural realism,
driven by the reduced cost and ease of use of FPGAs, resulting in more realistic measurements.
Unfortunately, it remains difficult to compare results obtained from different systems due
to differences in policy, evaluation metrics, and benchmarks. One result of this is that few
efforts attempt to compare to other tagged architectures. A summary of the evaluation
methods for the tagged architectures we examine is shown in Figure 5. The rest of this
section discusses the performance impacts of policy, performance metrics and benchmarks
used, and the evaluation of other elements such as silicon area and security.
A major challenge in evaluating tagged architectures and comparing results is that

the policy enforced by an architecture has a significant performance impact. PUMP [37]
exemplifies this observation. They report 11% runtime overhead for tag maintenance with an
additional 1% to 21% average overhead depending on the policy implemented. SDMP [90]
reports a similar phenomenon, with runtime overhead varying between 1% and 11% average
depending on policy, as does FlexiTaint [113]. For some configurable tagged architectures,
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Fig. 5. The evaluation of tagged architectures in the literature.

only the tag-maintenance overhead is reported [41, 63, 93]. This challenge also impacts
non-configurable architectures because their reported overhead implicitly includes their
policy.

Performance metrics pose another challenge to comparing results. For an accurate compar-
ison, we want to take into account as many overhead sources as possible. Runtime overhead,
the difference in time taken to run a benchmark program on the tagged architecture vs.
an equivalent untagged architecture, is good for that. It includes additional instructions
or cycles as well as cache behavior and OS overheads. However, several efforts consider
only the additional cycles introduced [41, 63], the cache miss rate [53, 90], or increases in
cycle time [36, 57, 61]. While these metrics provide useful information, they frequently omit
important overheads. For example, the Low-Fat architecture [57] measures the increase in
cycle time, which does not take into account software execution and does not include any
cache overhead resulting from the introduction of tags. We encourage the use of runtime
overhead as the primary metric, especially on FPGA or ASIC implementations, which have
good microarchitectural realism.
While runtime performance is a key consideration for tagged architectures, it is not the

only one. In particular, the silicon overhead of a tagged architectures is also particularly
relevant. This overhead measures the silicon area devoted to tag processing that could
otherwise be used for other architectural features such as larger caches. A number of efforts
consider the silicon area used by their tag processing, including Typed Architectures [41],
CHERI [121], SAFE [36], Harmoni [33], and others. Again, these overheads vary dramatically
based on the architecture and complexity of the base core. Along similar lines, a few
architectures [52, 78, 113] dedicate an additional core to tag processing. This essentially
reduces the number of cores available to process application data and should be considered
when evaluating such architectures.

Architectures that define and implement a specific policy frequently include a security
evaluation. This often takes the form of a benchmark suite of exploits [80, 105], manually
developed exploits [43, 47], or known exploits in existing software [25, 26], which are
demonstrated to fail.
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One notable evaluation effort is the CHERI project, which has published a paper exploring
the performance tradeoffs and overheads of implementing single-bit tagged memories [51].
This paper covers different ways to implement single-bit tags, integrate them into the memory
hierarchy, and the caching behavior of these tags for different size caches.

8 CHALLENGES

In this work, we have identified several challenges to the design, development, and adoption of
tagged architectures that remain open. We group these challenges into three broad categories:
(i) provisioning, (ii) enforcement, and (iii) overheads, based on the life-cycle of a tagged
program, as illustrated in Figure 1.

The life-cycle of a tagged program involves two major elements: provisioning and enforce-
ment. Provisioning involves generating correct tags for a program and then securely storing
them until the program is executed. Enforcement involves executing the program and using
tags to apply one or more policies on that execution. Additionally, policy enforcement via
tags results in a variety of overheads from memory to silicon area. We identify challenges in
each of these areas and discuss them below.

Table 2 summarizes the treatment of the challenges discussed in this section by the various
tagged architectures we have examined in this work. Red in the table denotes little to
no treatment of the challenge. Yellow denotes some consideration of the challenge. Green
denotes a complete addressing of the challenge. White indicates a challenge that is not
applicable to the given architecture. As can be observed, most challenges have not received
sufficient treatment in the existing tagged architectures.

8.1 Provisioning

Before tagged hardware can enforce policy, the initial tags for applications and the tag-
propagation logic must be created. We refer to this process of generating and storing tags as
provisioning, and it is a critical, but often overlooked, part of any practical tagged architecture.
If the initial program tags are tampered with, then the tag policies are compromised. Note,
however, that this is not different from ensuring that any binary, tagged or otherwise, is not
modified before execution and can be dealt with by, e.g., signing the binary and tags.
AEGIS [104] is noteworthy for bypassing this issue altogether by generating and propa-

gating tags in the processor and encrypting tags in off-chip memory. DataSafe [17] takes a
different approach and uses a privileged hypervisor to validate the authenticity of policies
transferred from a remote machine using encryption. Both designs ensure authentic tags by
leveraging isolation and encryption to validate the authenticity of tags or the policies from
which they are generated.

Even with authentic tags, properly tagging and checking the tags on a program is a
complex task, and it is possible for the tag and check insertion code to be buggy, allowing
policy violations. More concretely, suppose the initial tag state is generated by a compiler,
as in PUMP [37]. The compiler must now correctly generate the initial tags, as well as the
binary for execution. Such concerns have been around at least as long as compilers have [108].
Note that a similar situation exists whether the initial tag state is provided by the compiler,
loader, or OS. In all cases, potentially buggy code must be relied upon to process every
binary and generate correct tags. We call this the tag-correctness challenge.

One possible method to ensure tag correctness is formal verification of the compiler. While
formally verified compilers exist for some languages, such as a subset of C [60], developing
such compilers is a challenging task and such compilers often lack the optimizations expected
from a production compiler. Another option is to exhaustively test the program to verify
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Table 2. Evaluation of how each tagged architecture addresses the challenges we outline. Red – little
to no consideration. Yellow – some consideration. Green – completely addressed. White – not applicable.
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1 // Start as integer for pointer arithnetic.
2 uintptr_t p = 0xdeadbeef;
3 ...
4 // Up-cast from integer to pointer type.
5 uintptr_t *q = (uintptr_t *) p;
6 ...
7 // Policy violation despite being expected
8 // behavior (false positive in some designs).
9 *q = 1;

Fig. 6. Upcasting is an ambiguous idiom that causes problems for memory-safety policies.

that tags behave as expected on all inputs. Unfortunately, exhaustively generating all inputs
for most reasonable programs is impractical, though fuzzing is gaining in popularity as an
approximation of this approach. A final option would be to leverage symbolic execution
to identify and explore all paths that may lead to tag violations [13]. Unfortunately, this
approach does not scale due to a path explosion problem, as the number of paths grows
exponentially with program size [7, 11]. In short, guaranteeing tag correctness is still an
open problem, and equivalent to guaranteeing the correctness of any piece of software.
So far we have considered the correctness of tags, and not the policies enforced on the

semantics of those tags. As illustrated in subsection 2.2, writing a policy that enforces the
intended properties is non-trivial. Tags provide a powerful security mechanism, but they are
still subject to the usual problems of correct specification and implementation of software.

8.2 Enforcement

Policy enforcement consists of maintaining, propagating, and checking tags during program
execution. This is the core of any tagged architecture and performing this computation
efficiently has been the focus of much existing work. However, there are several areas
that have not been well explored, particularly around ambiguous or limited policies, the
composition of policies, and advanced hardware features. We discuss these issues and the
complications they introduce below.

8.2.1 Language Ambiguity. A variety of efforts we examined have reported false positives
and false negatives that occurred during the testing of common policies, especially those
related to memory safety [20, 43, 77]. In other words, these architectures incorrectly reported
violations in benign program execution or missed some execution that violated policy. One
of the major reasons for these false positives and false negatives is language ambiguity that
makes determining whether an operation is a policy violation difficult or impossible. The C
programming language is particularly prone to these issues, especially for memory safety
policies [20, 68].
One problematic idiom common in C is upcasting (e.g., an integer to pointer cast),

represented in Figure 6. Here, an integer is directly cast to a pointer, an unavoidable
operation in systems programming, especially when interfacing with hardware. Should a
memory-safety policy allow such a cast, and if so what should the resulting pointer be allowed
to access? As the operation is required for, e.g., OS code, policies must have an answer.
Assuming it is allowed, the simplest default access permissions are everything or nothing. A
sufficiently complex analysis might be able to track pointers across casts (in the case of a
pointer-to-integer-to-pointer sequence) or to identify the memory object being pointed to
based on the pointer’s value. In practice however, existing tagged architectures give all or
nothing permissions. Hardbound [34], for instance, will set the bounds for this newly created
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1 struct {
2 char buf[64];
3 int i;
4 } obj_t;
5

6 // Initialize obj.
7 obj_t obj;
8 ...
9

10 /* Part A */
11 void *op = (void *) obj;
12 ...
13 op[64] = 1; //legal access
14

15 /* Part B */
16 op = (void *) obj.buf;
17 ...
18 op[64] = 1; //also legal

Fig. 7. C allows the first field of a struct to be used as a reference for the struct itself.

pointer to NULL, resulting in a policy violation when the pointer is dereferenced. If there is
memory allocated at this address, this will be a false positive.

Another problematic idiom is C’s conflation of the first element of a struct with the struct
itself, as shown in Figure 7. In this code, a pointer to a struct is used to access the second
field, which is legal. Then a pointer to the first field of the struct is used to access the second
field. This is also legal because C defines a pointer to a struct and a pointer to the struct’s
first field to be equivalent [45]. However, this second access is not in the spirit of memory
safety and many systems, including Hardbound, disallow it [34]. Note that unlike upcasting,
which is a result of undefined behavior, this situation is defined behavior, but ambiguous
from a memory-safety perspective [45].

For ambiguous cases, there is a tradeoff between strictly enforcing policy and false positives.
Some architectures provide flexibility to toggle between such choices, while others do not.

8.2.2 Policy Limitations. While tagged hardware can enforce a variety of policies, it is
sometimes necessary to make tradeoffs between the ideal policy and what is actually
enforced, usually to match the hardware capabilities or for performance reasons. This usually
introduces false positives or false negatives to the policy-enforcement process.
There are application-specific policy simplifications that can be made. For instance,

Taxi [43, 47] defines a “linearity of return address” policy in which only one copy of a
return address can have a return-address tag (i.e., when a return address is copied, the
destination strips the return address tag of the source). This policy represents an attempt to
approximate a Shadow Stack while working within the hardware limitations. However, this
creates a false positive when running the gcc torture tests because a return address that has
already been used to call a function is used again. This is a case where policy approximation
results in false positives.
Another reason that policy may be approximated is due to hardware limitations. For

instance most of the memory-safety policies discussed in this paper are non-rigorous and
incomplete, including Taxi [43], HDFI [99], HardBound [34], SecureBit [86], Minos [25], and
DIFT [105]. This is due to limitations on the size of the tags supported by hardware. For
instance, SPARC M7 [84, 88] uses a 4-bit tag to protect heap objects from overwriting each
other’s memory. Of course, many applications require more than 24 = 16 unique memory
allocations, leading to repeated tags. As a result, an attacker has a non-negligible probability
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Fig. 8. SPARC M7 false negative caused by limited tag size.

of using a pointer to one heap allocation to interfere with the memory contents of another
allocation with the same tag. A more savvy attacker can also target the 1

16 of objects that
share the same tag to hijack control (assuming that tag assignment is deterministic). This
attack, which is demonstrated in Figure 8, leads to an undetected violation (i.e., a false
negative).

8.2.3 Policy Composition. Existing tagged architectures have demonstrated that tags can
be used to implement a variety of policies including identifying and tracking pointers for
memory safety [34], enforcing temporal memory safety [57], tracking type information [53],
securing the stack and its return addresses [47, 90], enforcing control-flow integrity [37], taint
tacking [37], tracking the flow of user input [86, 105], generalized information-flow tracking
policies [17, 99], and the isolation of important metadata [117]. Many applications could
benefit from several of these policies. For example, one might want to apply a policy that
provides memory safety and a policy that tracks information flow to ensure that sensitive
encryption keys are not leaked to disk or the network.

Unfortunately, most tagged architectures do not consider multiple policies being enforced
concurrently. To see why this is challenging, consider a machine with a one-bit tag trying to
enforce two policies: a memory-safety policy tagging return addresses with a 1 (and all other
words with a 0) and a taint-tracking policy that tracks all external inputs with a tag of 1.
When these policies are combined, the memory-safety policy is ineffective because external
inputs are allowed to overwrite return addresses (since they both have a tag of 1) while the
taint-tracking policy believes that all return addresses are derived from external inputs.
One way to compose policies is to use larger tags that can be segmented into sub-tags

used for each policy being enforced. However, the larger tags required by this approach
incur higher memory, silicon, and power overheads. A few architectures support combining
multiple DIFT policies using this approach. Both the DIFT Coprocessor [52] and Raksha [26]
provide a small, multi-bit tag where each bit tracks information flow for a different policy.
However, even these systems only support enforcing a limited number of DIFT policies
simultaneously; they do not support either arbitrary policies or arbitrary numbers of policies.

Dover [106] and PUMP [35] use a different approach for policy composition in which the
tag itself is a pointer to metadata of potentially unbounded size. In this case, supporting
multiple policies still requires more memory for tag metadata, but does not directly impact
the size of the tags and associated cache behavior. Memory, silicon, and power overheads for
the additional memory consumed by this metadata is still a concern, however.

8.2.4 Dynamic Linking and Loading. Dynamic linking enables applications to share the same
external dependencies (e.g., the C standard library) and reduces the duplication of code
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Fig. 9. Dynamic loading can lead to inconsistencies in policies as well as create attack surfaces in an
application.

between processes. Dynamic loading allows applications to load and run new code modules,
such as plugins and extensions, as needed at runtime. Both of these techniques can result in
code compiled separately, with potentially different policy, interacting in the same process
at runtime.

To see why this can be a problem, consider a shared library compiled without a tag policy
dynamically linked with an application compiled with a tag policy. The application’s policy
cannot protect the library’s code, leaving the library open to attackers. Worse, the library
may actually corrupt tagging state used by the application to enforce its policy. Consider an
application with a DIFT policy that tracks all external inputs into the program with a tag
of 1. If our shared library (with no tag policy) copies user input without copying the tag,
then this (tag-free) copy of user input can later be used by the application to violate policy
(since it is not tagged as external input). This suggests that all code in a process must be
compiled with the same tag policy in order for that policy to be effective.
When multiple applications have different tag policies, the situation gets even worse.

Consider a tagged machine with a one-bit tag and two applications, 𝐴 and 𝐵, sharing a
library with a function process. Application 𝐴 enforces a memory-safety policy by tagging
return addresses with a 1 (and all other words with a 0). This policy rejects a return address
with a 0 tag, preventing an attacker from hijacking the program’s execution. Application 𝐵
enforces a DIFT policy that tracks all external inputs into the program with a tag of 1.

Now suppose application 𝐵 and its external dependencies are compiled and executed on
the machine. This will result in the library function process being compiled with a DIFT
policy. As a result, when application 𝐴 is compiled and run, it must compile its own version
of the process code. Otherwise, application 𝐴 will run with a DIFT policy in the process
function, allowing an attacker to use program input (tagged with a 1) to overwrite the return
address of the process method and hijack 𝐴’s execution.
Similarly, suppose a tagged machine runs a web browser. The web browser is compiled

with a complete memory-safety policy (Figure 9). At runtime, the browser uses the Linux
dlopen interface to dynamically load plugins that extend the functionality of the browser.
There is no guarantee, however, that the plugins are compiled with the same policies as
the browser, opening the application to the same challenges seen with dynamic linking. In
essence, applications cannot leverage dynamic loading or linking without risking conflicting
policies that open them up to attacks.
A few architectures side step this challenge and successfully support shared libraries,

notably HyperFlow [41], CHERI [117], and DataSafe [17]. This is possible because these
architectures use tags to implement only classes of policies that cannot conflict with each
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other, like isolating capabilities from other elements of memory or only supporting IFC
policies.

A more general approach would be to use large tags, such that any policy desired has its
own sub-tag. However, large tags come with significant overhead in terms of memory, silicon,
and power, as mentioned previously. Furthermore, a number of the architectures described
in this work only provide one-bit tags [25, 86, 93, 99].

8.2.5 Direct Memory Access. Direct Memory Access (DMA) allows peripherals to copy data
directly into memory, bypassing the processor. It is frequently used by high-bandwidth I/O
devices such as network cards and disk drives to copy data directly to or from memory
without involving the CPU.

The ability for other devices to read or write memory independent of the processor has
significant implications for tagged architectures. Unless the DMA engine is made tag-aware,
it completely bypasses any tag policy. Thus, tags cannot be used to prevent the DMA engine
from reading or writing memory nor will the DMA engine update the tags after writing
to memory. As a result, any isolation enforced with tags can be bypassed using the DMA
engine and any tags on objects written by the DMA engine are not guaranteed to be correct.

Not only can a tag-oblivious DMA engine bypass and not update tags, it may also be able
to rewrite the tags of arbitrary memory if tags themselves are stored in DMA-accessible
memory. This is of particular concern due to the rise of DMA-based attacks that either do
not require a malicious peripheral [91] or function despite the presence of an IOMMU [65].
The only architectures protecting against such DMA attacks (AEGIS [104], DataSafe [17],
and XOM [61]) do so by encrypting all data in main memory, preventing the DMA engine
from modifying the data or tags.
We argue that a practical modern tagged architecture must include a tag-aware DMA

engine. The only works we are aware of considering DMA for tagged memory are WHISK [87]
and TaintHLS [85] which investigate the integration of peripherals and DMA with tagged
memory in SoCs. As none of the tagged architectures we examine in this work consider such
integration, significant research into this area is still needed.

8.2.6 Advanced Hardware Features. Existing work on tagged architectures has been mainly
confined to single cores with in-order, single-issue execution. However, modern general-
purpose processors are significantly more complex with features such as multicore, out-of-
order execution, and speculation that significantly improve performance. All of these features
pose challenges to tagged architectures.
Out-of-order execution is a technique in which instructions that are independent of one

another are re-ordered based on available execution units and input data. This results in a
significant performance improvement by maximizing the utilization of processing elements.
Speculative execution builds on out-of-order execution by making predictions about instruc-
tions or data to be executed after branches and preemptively performing those calculations.
This expands the performance improvements that out-of-order execution provides across
branches. Both have recently been shown to result in powerful side channels [55, 62].
Out-of-order and speculative execution significantly complicate tagged architectures.

For out-of-order execution, tags and tag policy introduce additional constraints on when
instructions are independent and can be safely re-ordered while for speculative execution,
tags and tag policy introduce constraints on whether speculatively executed code can be
committed. Consider an instruction 𝐴 that updates the tag on the program counter to be 𝑥,
an instruction 𝐵 that writes to a memory address 𝑏, and a tag policy that only allows writes
to 𝑏 if the program counter has the tag 𝑥. While instructions 𝐴 and 𝐵 appear independent
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of each other, the successful execution of instruction 𝐵 given this tag policy depends on
instruction 𝐴. In other words, determining whether two instructions are independent and
can be executed out-of-order requires analyzing the tag policy.

The vast majority of tagged architectures we examined are based on in-order processors and
do not consider out-of-order or speculative execution. The few architectures that consider
out-of-order execution are largely information-flow tracking systems in which tags only
change to follow propagating data [52, 78, 113] or fine-grained memory-protection schemes
in which tags do not change [4, 119]. Similarly, the few systems that speculate are focused on
basic memory-protection schemes [104, 119] in which tags do not change frequently. Dealing
with out-of-order and speculative execution in the general case is an open problem.

Multicore is another performance-enhancing feature in modern processors, but it introduces
significant complexity for tagged architectures that has not been yet studied. In such
architectures, memory and often at least one cache level is shared among multiple cores.
While it is conceptually possible to consolidate all tag processing in a central tag engine, this
would likely impose an undue performance bottleneck by serializing all tag processing. This
necessitates core-local tag processing. However, shared memory and caches introduce the
possibility of tag-specific concurrency challenges, especially for shared-memory applications.
Tags must be coherent in any caches to ensure correct policy enforcement. For parallel
application processing, at minimum the policies enforced by each core must be consistent
(or at least compatible) when operating on shared data. Some tag policies themselves may
need to be updated to be concurrency safe. Furthermore, tag and memory accesses must
be either atomic or properly synchronized, which may introduce performance overhead or
undue complexity. These are only a few of the myriad challenges in designing a multicore
tagged architecture that have been largely unexplored.

8.2.7 Side Channels. While tagged architectures enable the enforcement of many classes
of security policies, they do not protect against all classes of attacks. In particular, tagged
architectures by themselves do not protect against side-channel attacks. In fact, tagged
architectures are likely to introduce additional side channels due to the additional caching
and data-dependent computation inherent in tag processing. For example, the rule cache
present in many architectures, including Dover [106] and PUMP [35], can likely be subjected
to prime-and-probe style attacks to identify the tags used by an isolated software component
or to determine its computation pattern. Similarly, the delay inherent in a tag cache miss is
likely measurable and exploitable via a flush-and-reload or prime-and-probe attack.
Recent hardware-based side-channel attacks [55, 62] have highlighted the importance of

microarchitectural side channels. Tagged processors are open to the same types of micro-
architecture side-channels and possibly others related to additional tag complexity.
The only work we are aware of investigating this issue is HyperFlow [41], which is a

processor that is designed to be both tagged and free of timing side channels. Hyperflow
implements a nonmalleable IFC policy using tags. To eliminate timing side channels, the
processor tracks the tag of the currently executing code and flushes caches, TLB, branch
predictor, and other microarchitectural state on changes in the confidentiality or integrity
tag of the running code. The modifications to avoid timing side channels seem more extensive
than those to add tags. The authors report overheads in cycles per instruction of between 1%
and 69%, largely due to padding the multiply operation to the worst-case number of cycles.
While HyperFlow is a promising start, significant additional work is needed to understand
side channels present in tagged architectures and suggest methods for remediation.
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0x1000 00

0x1004 10

0x1008 00

... ...

0x2000 00

0x2004 00

... ...

(a) Naive Tag Table

0x1000 00
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0x1008 00

... ...

(b) Optimized Tag Table

Only Word 
with a Tag

0x1000 Present

0x2000 !Present

0x3000 !Present

... ...

Minimal Memory Overhead 
for Untagged Pages

Fig. 10. A näıve and optimized implementation of an in-memory tag table.

8.3 Overheads

Tagged architectures add complexity that incurs several types of overhead. Understanding,
characterizing, and reducing such overheads is crucial to the adoption of tagged architectures.
We break down these overheads along four dimensions: memory overhead, runtime overhead,
silicon overhead, and power overhead. Note that we do not consider storage overhead since
filesystem storage is not tagged in any of the architectures described in this paper. Where
tags need to be preserved beyond memory, e.g., for tagged executables, a compressed
representation is typically used and the tags are then reconstructed when loading into
memory, resulting in comparatively little extra space being required.

8.3.1 Memory Overhead. The memory overhead of a tagged architecture depends on the
size of the tags and any compression schemes used by the hardware. This presents several
trade-offs as large tags enable more complex policies but have larger memory overhead.
Similarly, complex compression schemes may reduce the memory overhead but increase the
computational overhead of accessing the tags.
Most tagged architectures address the memory overhead of tags. However, memory

overheads still vary significantly, due to the trade-offs mentioned above. Memory overheads
can easily reach 100% for architectures with large, word-size tags that do not implement
compression schemes, such as HardBound [34], while architectures with 1-bit tags and
complex, page-table-inspired compression schemes, like Shioya, et al. [93], can achieve
memory overheads as low as 0.685%. These schemes are illustrated in Figure 10.

8.3.2 Runtime Overhead. Runtime overhead is the slowdown on a tagged architecture relative
to an untagged architecture. Two key factors contributing to this overhead are additional
tag processing and increased cache pressure due to tags.
In terms of cache pressure, architectures that store tags disjointly from data in the last-

level cache experience increased cache miss penalties. As shown in Figure 11, cache misses
increase when both tags and data/instructions share the same cache. Similarly, if tags are
stored disjointly from data in memory, then multiple fetches may be required on a single
cache miss, one to fetch the data and one to fetch the tag. Even if memory is widened, there
is still a runtime impact because an equivalently sized cache holds less data, due to the space
used by tags. The CHERI team examined the caching and storage impact of their 1-bit tags
in a recent paper [51], but more work is needed in this area.
Propagating and checking tags also introduces additional computation. For instance,

several tagged architectures introduce instructions that the compiler can insert to check or
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Fig. 11. Tagged architectures that share a cache between tags and data/instructions increase the
number of cache misses.

update tags [34, 41, 99]. These instructions must be inserted anywhere that tag processing is
required, increasing the runtime of the program. To eliminate these additional instructions,
some architectures process tags in dedicated units in parallel with the ALU [37, 47, 106].
This approach, however, increases the silicon overhead of the architecture.

8.3.3 Silicon Overhead. Silicon overhead represents area on the processor that is dedicated
to tag-processing logic and that would otherwise be available for additional cores, ALUs, or
cache in an untagged architecture. The silicon overhead of a particular architecture is driven
by the tag-processing mechanisms and its integration into the processor design.
Hardbound [34] and Minos [25] process tags using minor modifications to the existing

pipelines and several new instructions, resulting in minimal additional area. Other architec-
tures such as Taxi [43] and TIARA [95] add a dedicated tag-processing unit to process tags
in parallel with instructions. On Dover, this tag processing unit is a full CPU [106]. These
designs use significantly more area.

Policy and tag complexity also affect the silicon overhead. For instance, SecureBit [86] uses
a 1-bit tag to protect buffers shared among processes. With OS modifications and a few new
instructions, SecureBit implements a memory-safety policy with little silicon overhead. In
contrast, PUMP [37] supports software-defined policies in hardware, requiring an additional
pipeline stage with a dedicated tag-processing unit to fetch policies and interpret policies
against incoming tags, all of which requires significantly more area. PUMP thus provides
more flexible policies at the cost of more area. Tag size results in a similar trade off because
the larger tags must be stored in caches, requiring more bits and thus more area for a cache
that holds the same amount of data.
Additional silicon also impacts the TCB of the tagged architecture. Returning to the

comparison above, SecureBit relies on the OS to support tag policies. In contrast, PUMP
utilizes more silicon to provide a privileged processor mode to handle tag creation and
propagation, isolated from a potentially untrusted OS. In summary, architectures tradeoff
silicon in varying quantities for performance, policy complexity, and improved security
guarantees.

8.3.4 Power Overhead. The additional silicon required by tagged architectures results in an
increase in required power over an untagged architecture. Consider, for instance, a design
such as HardBound [34], which can easily have 100% memory overhead. This can increase the
amount of power required for DRAM due to the additional memory used for maintaining tags.
Similarly, coprocessors, such as those used by Dover [106] and PUMP [35], are effectively
processors themselves, resulting in nontrivial power overheads. This reality is at odds with
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the SWaP (size, weight, and power) requirements of modern mobile and embedded devices
in which power must be conserved in order to preserve battery [82].
Only five of the efforts discussed in this paper (Typed Architectures [53], PUMP [35],

Harmoni [33], FlexCore [32], and FlexiTaint [113]) assess power overhead in their work.
This absence and the importance of power/energy analysis for tagged architectures suggests
significant room for future work.

9 CONCLUSION

In this work, we presented a survey of tagged architectures and developed a four-dimensional
taxonomy to study the efforts in this area. We identified and studied a number of challenges
in three broad categories of provisioning, enforcement, and overhead and found that existing
tagged architectures provide little work to address them. We also discuss why addressing
these challenges is non-trivial and pose a number of open research problems to advance the
security and practicality of tagged architectures.
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[29] Arthur Azevedo De Amorim, Maxime Dénes, Nick Giannarakis, Catalin Hritcu, Benjamin C Pierce,
Antal Spector-Zabusky, and Andrew Tolmach. 2015. Micro-policies: Formally verified, tag-based

security monitors. In Security and Privacy (SP), 2015 IEEE Symposium on. IEEE, 813–830.
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[60] Xavier Leroy, Sandrine Blazy, Daniel Kästner, Bernhard Schommer, Markus Pister, and Christian

Ferdinand. 2016. CompCert – a formally verified optimizing compiler. In Embedded Real Time Software
and Systems (ERTS).

[61] David Lie, Chandramohan Thekkath, Mark Mitchell, Patrick Lincoln, Dan Boneh, John Mitchell, and

Mark Horowitz. 2000. Architectural support for copy and tamper resistant software. ACM SIGPLAN
Notices 35, 11 (2000), 168–177.

[62] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh, Jann Horn,

Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg. 2018. Meltdown:
Reading Kernel Memory from User Space. In 27th USENIX Security Symposium (USENIX Security

18).

[63] Tong Liu, Gang Shi, Liwei Chen, Fei Zhang, Yaxuan Yang, and Jihu Zhang. 2018. TMDFI: Tagged
Memory Assisted for Fine-Grained Data-Flow Integrity Towards Embedded Systems Against Software

Exploitation. In 2018 17th IEEE International Conference On Trust, Security And Privacy In

Computing And Communications/ 12th IEEE International Conference On Big Data Science And
Engineering (TrustCom/BigDataSE). IEEE, New York, NY, USA, 545–550.

[64] lowRISC Team. 2017. Tag support in the Rocket core. https://www.lowrisc.org/docs/minion-
v0.4/tag core/

[65] A Theodore Markettos, Colin Rothwell, Brett F Gutstein, Allison Pearce, Peter G Neumann, Simon W

Moore, and Robert NM Watson. 2019. Thunderclap: Exploring Vulnerabilities in Operating System
IOMMU Protection via DMA from Untrustworthy Peripherals.. In NDSS.

[66] Derrick McKee, Yianni Giannaris, Carolina Ortega Perez, Howard Shrobe, Mathias Payer, Hamed

Okhravi, and Nathan Burow. 2022. Preventing Kernel Hacks with HAKC. In Proceedings 2022 Network
and Distributed System Security Symposium. NDSS, Vol. 22. 1–17.

[67] Arjun Menon, Subadra Murugan, Chester Rebeiro, Neel Gala, and Kamakoti Veezhinathan. 2017.

Shakti-t: A risc-v processor with light weight security extensions. In HASP ’17.
[68] Samuel Mergendahl, Nathan Burow, and Hamed Okhravi. 2022. Cross-Language Attacks. In Proceedings

2022 Network and Distributed System Security Symposium. NDSS, Vol. 22. 1–17.

[69] David A Moon. 1985. Architecture of the Symbolics 3600. ACM SIGARCH Computer Architecture
News 13, 3 (1985), 76–83.

[70] Santosh Nagarakatte, Milo MK Martin, and Steve Zdancewic. 2014. Watchdoglite: Hardware-accelerated
compiler-based pointer checking. In Proceedings of Annual IEEE/ACM International Symposium on

Code Generation and Optimization. ACM, 175.

[71] Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. 2009. SoftBound: Highly
compatible and complete spatial memory safety for C. ACM Sigplan Notices 44, 6 (2009), 245–258.

[72] Hamed Okhravi. 2021. A Cybersecurity Moonshot. IEEE Security & Privacy 19, 3 (2021), 8–16.

https://doi.org/10.1109/MSEC.2021.3059438
[73] Aleph One. 1996. Smashing the stack for fun and profit. Phrack magazine 7, 49 (1996), 14–16.

[74] OpenBSD. 2003. OpenBSD 3.3. http://www.openbsd.org/33.html

ACM Comput. Surv., Vol. 1, No. 1, Article . Publication date: May 2022.

https://www.lowrisc.org/docs/minion-v0.4/tag_core/
https://www.lowrisc.org/docs/minion-v0.4/tag_core/
https://doi.org/10.1109/MSEC.2021.3059438
http://www.openbsd.org/33.html


TAG: Tagged Architecture Guide 35

[75] Oracle. 2020. Sparc M8 Software in Silicon Features. https://docs.oracle.com/cd/E55211 01/html/
E55216/gpzpn.html

[76] Elliott I Organick. 1973. Computer system organization: the B5700/B6700 series. Academic Press.

[77] Christian W Otterstad. 2015. A brief evaluation of Intel® MPX. In Systems Conference (SysCon),
2015 9th Annual IEEE International. IEEE, 1–7.

[78] Meltem Ozsoy, Dmitry Ponomarev, Nael Abu-Ghazaleh, and Tameesh Suri. 2011. SIFT: A low-overhead

dynamic information flow tracking architecture for SMT processors. In Proceedings of the 8th ACM
International Conference on Computing Frontiers. ACM, 37.

[79] Linux Manual Page. 2019. http://man7.org/linux/man-pages/man7/pkeys.7.html

[80] Christian Palmiero, Giuseppe Di Guglielmo, Luciano Lavagno, and Luca P. Carloni. 2018. Design and
Implementation of a Dynamic Information Flow Tracking Architecture to Secure a RISC-V Core for

IoT Applications. In 2018 IEEE High Performance extreme Computing Conference (HPEC).

[81] V. Pappas, M. Polychronakis, and A.D. Keromytis. 2012. Smashing the Gadgets: Hindering Return-
Oriented Programming Using In-Place Code Randomization. In IEEE Symposium on Security and

Privacy.

[82] Joseph A Paradiso and Thad Starner. 2005. Energy scavenging for mobile and wireless electronics.
IEEE Pervasive computing 4, 1 (2005), 18–27.

[83] PaX. 2003. PaX Address Space Layout Randomization. ttp://pax.grsecurity.net/docs/aslr.txt

[84] Stephen Phillips. 2014. M7: Next generation SPARC. In Hot Chips 26 Symposium (HCS), 2014 IEEE.
IEEE, 1–27.

[85] Christian Pilato, Kaijie Wu, Siddharth Garg, Ramesh Karri, and Francesco Regazzoni. 2018. TaintHLS:
High-level synthesis for dynamic information flow tracking. IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems 38, 5 (2018), 798–808.

[86] Krerk Piromsopa and Richard J Enbody. 2006. Secure bit: Transparent, hardware buffer-overflow
protection. IEEE Transactions on Dependable and Secure Computing 3, 4 (2006), 365–376.
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