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Abstract
Software-defined networking (SDN) has emerged as a flexi-

ble network architecture for central and programmatic control.
Although SDN can improve network security oversight and
policy enforcement, ensuring the security of SDN from so-
phisticated attacks is an ongoing challenge for practitioners.
Existing network forensics tools attempt to identify and track
such attacks, but holistic causal reasoning across control and
data planes remains challenging.

We present PICOSDN, a provenance-informed causal ob-
server for SDN attack analysis. PICOSDN leverages fine-
grained data and execution partitioning techniques, as well
as a unified control and data plane model, to allow practi-
tioners to efficiently determine root causes of attacks and to
make informed decisions on mitigating them. We implement
PICOSDN on the popular ONOS SDN controller. Our evalu-
ation across several attack case studies shows that PICOSDN
is practical for the identification, analysis, and mitigation of
SDN attacks.

1 Introduction

Over the past decade, the software-defined networking
(SDN) architecture has proliferated as a result of its flexi-
bility and programmability. The SDN architecture decouples
the decision-making of the control plane from the traffic be-
ing forwarded in the data plane, while logically centralizing
the decision-making into a controller whose functionality can
be extended through network applications (or apps).

SDN has been touted as an enhancement to network se-
curity services, given that its centralized design allows for
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complete oversight into network activities. However, the pro-
grammable nature of SDN creates new security challenges
and threat vectors. In particular, the control plane’s state
and functionality can be maliciously influenced by data in-
put originating from the data plane and apps. These cross-
plane [13,24,41,49,53,62] and cross-app [8,52] attacks have
significant security repercussions for the network’s behavior,
such as bypassing access control policies or redirecting data
plane traffic. An adversary only needs to attack data plane
hosts or apps, and does not have to compromise the controller.

In software-defined networks, as in traditional networks,
security products such as firewalls and intrusion detection
systems (e.g., Snort, Zeek/Bro, Splunk) must be deployed
to continuously monitor potential security incidents. When
these tools signal a security alert, the network operator must
investigate the incident to diagnose the attack, establish possi-
ble root causes, and determine an appropriate response. This
investigation stage is particularly essential when considering
that security monitoring tools are notoriously prone to issuing
false alarms [16]; however, in the case of SDN, the control
plane and its novel attack vectors may also be implicated
when incidents occur. To this end, recent network causality
and provenance analysis tools have been proposed to aid in
SDN forensics [15, 52, 55, 61]. However, we argue that such
tools have limitations in terms of providing the precise and
holistic causal reasoning that is needed by investigators.

First, the control plane’s causality (or provenance) model
has a significant effect on the precision with which a prac-
titioner can identify root causes. If the control plane’s data
structures are too coarse-grained or if the control plane uses
long-running processes, this can lead to dependency explosion
problems in which too many objects share the same prove-
nance. That reduces the ability to identify precise causes.

Second, the control plane’s decisions cause the data plane’s
configuration to change; the effects of the data plane’s con-
figuration on packets sent to the controller cause subsequent
control plane actions. When such tools examine the control
plane alone, the indirect causes of control plane actions that
result from data plane packets will lead to an incomplete



dependency problem that ignores the data plane topology.
Third, a practitioner will want to know not only the root

causes for an action but also the extent to which such root
causes impacted other network activities. For instance, if a
spoofed packet is found to be the attack vector for an attack,
then the practitioner will want to investigate what else that
spoofed packet influenced to understand whether other attacks
and undesirable behavior have also occurred.

Overview We present PICOSDN, a tool for SDN attack
analysis that mitigates the aforementioned dependency ex-
plosion and incomplete dependency challenges. PICOSDN
allows practitioners to effectively and precisely identify root
causes of attacks. Given evidence from an attack (e.g., vio-
lations of intended network policies), PICOSDN determines
common root causes in order to identify the extent to which
those causes have affected other network activities.

PICOSDN’s approach uses data provenance, a data plane
model, and a set of techniques to track and analyze network
history. PICOSDN records provenance graphically to allow
for efficient queries over past state. Although similar network
forensics tools have also used graphical structures [52,55,60],
these tools’ provenance models suffer from dependency ex-
plosion or incomplete dependency problems. To account for
those challenges, PICOSDN performs fine-grained partition-
ing of control plane data objects and leverages app event
listeners to further partition data and process execution, re-
spectively. PICOSDN also incorporates the data plane’s topol-
ogy such that indirect control plane activities caused by data
plane packets are correctly encoded, which mitigates incom-
plete dependencies. Finally, PICOSDN’s toolkit reports the
impacts of suspected root causes, identifies how network iden-
tifiers (i.e., host identities) evolve over time, and summarizes
how the network’s configuration came to be.

We have implemented PICOSDN within the popular ONOS
SDN controller [5]. Many telecommunications providers,
such as Comcast, use ONOS or one of its proprietary deriva-
tives. We evaluated PICOSDN by executing and analyzing
recent SDN attack scenarios found in the literature and in
the Common Vulnerabilities and Exposures (CVE) database.
PICOSDN precisely identifies the root causes of such attacks,
and we show how PICOSDN’s provenance model provides
better understanding than existing network tools do. Our im-
plementation imposes an average overhead latency increase of
between 7 and 21 ms for new forwarding rules, demonstrating
PICOSDN’s practicality in realistic settings.

Summary of Contributions Our main contributions are:

1. An approach to the dependency explosion problem for
SDN attack provenance that utilizes event listeners as
units of execution.

2. An approach to the incomplete dependency problem
for SDN attack provenance that incorporates a data
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Figure 1: Topology of the CVE-2018-12691 attack scenario
described in § 2.1. The red path represents the attacker’s
desired data plane communication from h1 to h2.

plane model and tracking of network identifiers.

3. The design and implementation of PICOSDN on
ONOS to evaluate SDN attacks and to demonstrate PI-
COSDN’s causal analysis benefits.

4. The performance and security evaluations of PI-
COSDN on recent SDN attacks.

2 Background and Motivation

Many real-world SDN attacks leverage data plane dependen-
cies and long-running state corruption tactics to achieve their
goals. SDN controllers are susceptible to attacks from data
plane hosts that poison the controller’s network state view
and cause incorrect decisions [13, 24, 41, 49, 53]. We consider
a motivating attack to illustrate the limitations that a prac-
titioner encounters when using existing network forensics
tools.

2.1 Motivating Attack Example
Scenario Consider the control plane attack CVE-2018-
12691 [53] in ONOS. It enables an attacker to use spoofed
packets to circumvent firewall rules. This class of cross-plane
attack leverages spoofed data plane input to fool the controller
into maliciously changing the data plane forwarding. Com-
plete prevention of such attacks is generally challenging, as
spoofed information from data plane hosts is a notorious net-
work security problem in SDN [13, 24, 28]. Such attacks can
also be one part of a multi-stage attack in which the attacker’s
goal is to defeat the data plane access control policy and move
laterally across data plane hosts to gain additional access [18].

Suppose that the attack is carried out on a network topology
as shown in Figure 1. Assume that the controller runs a data
plane access control application and a reactive1 forwarding
application. The attack works as follows. A malicious data
plane host, h1, wants to connect to a victim host, h2, but the
data plane access control policy is configured to deny traffic

1Although we discuss a reactive SDN configuration here as an example,
PICOSDN’s design generalizes to proactive SDN configurations, too. We
refer the reader to § 8 for further discussion.
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(a) Relevant provenance for the CVE-2018-12691 attack based on techniques from FOREN-
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Figure 2: Provenance of the CVE-2018-12691 attack. Ellipses represent SDN control plane objects, rectangles represent SDN
processes, and pentagons represent the SDN components responsible for each process or object (i.e., the agency). The text of the
labels in (b) are abbreviations from the text of the labels found in (a).

from h1 to h2 based on its IP address. The malicious host h1
emits into the data plane a spoofed ICMP packet, p1, with an
invalid IP address. The controller creates a data structure, the
host representation object, for h1 with a valid MAC address
but no IP address. The data plane access control application,
acl, checks to see if it needs to insert new flow rules based on
the data plane access control policy. As the controller does
not associate h1 with an IP address, no flow rules are installed.

Some time later, h1 sends to h2 a packet, p2, with a valid
source IP address. ONOS updates the host object for h1 with
h1’s actual IP address. Unfortunately, at this point, a bug
stops the data plane access control application from handling
events in which a host object is updated. Thus, the update
never triggers the application to install flow deny rules that
prevent h1 from sending traffic to h2. The result is that the
reactive forwarding application forwards the packet out (p3).

Environment In a typical enterprise environment, a variety
of system- and network-layer monitoring tools are usually
deployed [1,17,23,45]). These services are largely reactive in
nature, triggering threat alerts when a suspicious event occurs.
After an alert is raised, it is then the responsibility of a network
practitioner or security analyst to manually investigate the
alert, determine its veracity, and determine an appropriate
incident reponse. Threat investigation routines are carried out
through the use of a variety of log analysis software, often
referred to as Security Indicator & Event Management (SIEM)
systems, (e.g., Splunk). Timely investigation of these alerts
is critical, as failing to respond promptly can increase the
attackers’ dwell time and, therefore, the damage inflicted.

Investigation Some time later, a network practitioner is
alerted to a suspicious event within the network—the intru-
sion detection system (IDS) has detected a large data trans-
mission from from host h1 to a known malicious domain.
Unbeknownst to the practitioner, this flow represents an exfil-
tration of sensitive data from host h2 to the open network via
h1, violating the intended data plane access control policy. As
the practitioner begins to investigate the alert, they notice that
a new flow rule was recently added between h1 and h2, but it
isn’t clear how or why this network reconfiguration occurred.

To understand the context of this change to the control
plane, the practitioner attempts to perform causal analysis
using a provenance graph over the control plane’s past state,
which is depicted in Figure 2a. As the practitioner now knows
that a flow rule from h1 and h2 seems to have coincided
with the security incident, they use this as an initial piece of
evidence: a flow rule ( f3) was installed that allowed traffic
from h1 to h2 on switch s2. The practitioner then issues a
query and identifies a set of possible root causes related to the
lineage of that flow rule.

2.2 Existing Tool Limitations

However, the practitioner runs into several challenges when
using existing tools to generate a graph such as the one in Fig-
ure 2a. Although linking h1’s packets to s1’s default flow rule
(i.e., f1) does capture past causality, the practitioner is easily
overwhelmed when all packets over all time from any of s1’s
ports are also linked to that default flow rule. The practitioner
also finds that switches s1 and s2 as principal agents become
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Figure 3: API-based provenance, based on techniques from
PROVSDN [52], produces dependency explosion. When an
app’s event listener (fwd) is modeled as one long-running
process, all API calls are considered as possible dependencies.
For instance, the API call at time t = 4 may incorrectly appear
to be dependent on all API calls from t = [1,3].

too coarse-grained to enable pinpointing of attribution. Since
existing tools do not account for the data plane as a causal
influence, the result in Figure 2a is a set of two disconnected
subgraphs. That disconnection prevents the practitioner from
performing a meaningful backward trace. Finally, backward
tracing alone would not provide the practitioner with details
about the attack’s other effects. We generalize those chal-
lenges and consider them in depth below.

Limitation (L1): Dependency explosion Provenance
modeling suffers from the dependency explosion problem in
which long-running processes or widely-used data structures
within a system can create false dependencies. For instance,
PROVSDN [52] uses an API-centric model. Figure 3 shows
the provenance generated from two different calls to fwd’s
event handler, which results in four API calls in total. It is not
obvious that an API call to forward() was initiated by one (and
only one) API call to inPacket(). As a result, the API-centric
model would create many false dependencies because an API
call would be falsely dependent on all previous API calls.

FORENGUARD’s event-centric model uses execution parti-
tioning, but if we apply it as shown in Figure 2a, we see that a
controller that installs default flow rules (i.e., f1) will cause all
unmatched packets (i.e., p1 and p2) to become dependent on
it. As a result, FORENGUARD’s modeling approach can suffer
from data partitioning challenges when too many unrelated
effects of a root cause must also be analyzed.

Limitation (L2): Coarse-grained responsibility and false
attribution A similar challenge exists in the assignment of
responsibility (or agency) in the data plane. In Figure 2a, the
agency traces back to a switch, either s1 or s2. Although this
correctly implies that one of the root causes of the attack is s1
or s2, it is not a particularly useful insight because all other
activities have one of these root causes, too. Instead, should
the responsibility be assigned to a notion of a host? Given that
network identifiers (e.g., MAC addresses) are easily spoofable,

assigning agency to hosts would not solve the problem either;
malicious hosts would simply induce false dependencies in
the provenance graph.

Limitation (L3): Incomplete dependencies In contrast to
false dependencies, incomplete dependencies occur when the
provenance model does not capture enough information to
link causally related activities. For SDN attacks, that occurs
when the data plane’s effects on the control plane are not cap-
tured by an implicit data plane model. In our attack scenario
in § 2.1, the reactive forwarding application reacts to activities
from switch s1 before forwarding the packet (i.e., p3) out to
other ports. On the other end of one of s1’s ports, switch s2
receives that incoming packet (i.e., p4) and further processes
it. Figure 2a’s disconnected subgraphs appear to show that
switch s1’s history of events is independent of switch s2’s
history of events. Thus, if a practitioner were starting their
investigation from a flow rule on switch s2, they would not
be able to see that the root cause occurred because of earlier
events related to switch s1 and the malicious host h1’s spoofed
packets. PROVSDN and FORENGUARD do not account for
this kind of data plane model and would thus suffer from in-
complete dependencies. Other tools [11, 57, 59, 61] model the
implicit data plane, but are applicable only in the declarative
networking paradigm. Most of the popular SDN controllers
such as Floodlight, ONOS, and OpenDaylight, in contrast,
use an operating-system-like imperative paradigm.

Limitation (L4): Interpretation and analysis Even if the
dependency-related challenges previously described were mit-
igated, it can still be challenge to interpret provenance graphs.
For instance, if the practitioner in our attack scenario from
§ 2.1 wanted to understand how network identifier bindings
(e.g., the network’s bindings between a host’s MAC address
and its location in the data plane) changed over time, the
provenance graph in Figure 2a would not support that; it does
not directly link the host objects because their generation were
not causally related.

PROVSDN and FORENGUARD use backward tracing to
start with a piece of evidence and find its information flow
ancestors or set of root causes, respectively. However, if the
practitioner wanted to know the other effects of the spoofed
packet generated by h1, that analysis would require forward
tracing techniques that start at a cause and find its progeny
to determine what other data and processes were affected.
As neither PROVSDN nor FORENGUARD performs forward
tracing, the practitioner would not be able to discover other
relevant unexpected artifacts of the attack, such as acl’s failure
to generate flow deny rules.

The practitioner ultimately wants to answer network con-
nectivity questions of the form “Which packet(s) caused
which flow rule(s) to be (or not to be) installed?” However,
the SDN controller’s event-based architecture can be itself
complex [53]. Although the complexity must be recorded to



maintain the necessary dependencies, most of the complex-
ity can be abstracted away to answer a practitioner’s query.
Thus, abstracted summarization is necessary for practitioners
to understand attacks easily and quickly.

2.3 Our Approach

Motivated by the attack presented in § 2.1 and the previ-
ous tools’ limitations noted in § 2.2, we highlight how PI-
COSDN would mitigate the issues. PICOSDN uses a prove-
nance model that accounts for data and execution partitioning
with precise agency, while also incorporating the implicit
data plane effects on the control plane (§ 3). PICOSDN also
provides techniques to aid in analysis (§ 5).

Applying PICOSDN produces the graph shown in Fig-
ure 2b. Rather than rely solely on the default flow rule f1
as a cause, the practitioner can see that packets p1 and p2
originate at a host on switch s1’s port 1 (L1). That also allows
the practitioner to precisely identify agency at the switch port
(rather than switch) level (L2). The previously independent
activities from each switch are linked by the data plane model
that connects p4 with p3 (L3), which allows the practitioner
to backtrace from s2 to s1 (L4). Finally, the practitioner can
see how host h1’s network identifier information evolved over
time (L4) and can summarize the past network state (L4).

3 PICOSDN Provenance Model

In order to reason about past activities and perform causal
analysis, we first define a provenance model that formally
specifies the relevant data, processes, and principal identities
involved in such data’s generation and use.2 Our unified ap-
proach accounts for app, control, and data plane activities,
which allows us to reason holistically about SDN attacks.

3.1 Definitions

A provenance graph, denoted by G = (V ,E), is a directed
acyclic graph (DAG) that represents the lineages of objects
comprising the shared SDN control plane state. Informally
stated, the graph shows all of the relevant processes and prin-
cipal identities (i.e., agents) that were involved in the use or
generation of such control plane objects. We use the graph to
analyze past activities to determine root causes (i.e., backward
tracing) and use those root causes to determine other relevant
control plane activities (i.e., forward tracing).

Each node v ∈V belongs to one of three high-level classes:
Entity, Activity, and Agent. Each high-level node class is ex-
plained with its respective subclasses in Table 1. We detail
the design choices and semantics of these nodes in § 3.2. A
node may also contain a dictionary of key–value pairs.

2Our model is loosely based on the W3C PROV data model [44].

Table 1: Nodes in the PICOSDN provenance graph model.

Node class Node meaning and node subclasses

Entity

A data object within the SDN control plane state, used or
generated through API service calls or event listeners
Subclasses: Host, Packet (subsubclasses: PacketIn, Pack-
etOut), FlowRule, Objective, Intent, Device, Port, Table, Me-
ter, Group, Topology, Statistic

Activity
An event listener or a packet processor used by an SDN
app or controller
Subclasses: EventListener, PacketProcessor

Agent
An SDN app, an SDN controller core service, a switch
port, or a switch (i.e., device)
Subclasses: App, CoreService, SwitchPort, Switch

Each edge (or relation) e ∈ E belongs to one of the classes
listed in Table 2; rows that are indented show relations that
have more precise subclasses and meanings from their super-
class. Relations form the connections among the control plane
objects, the network activities involved in their generation and
use, and principal identities within the SDN components.

A backward trace path, denoted by tb = 〈v0→ e0→ ··· →
ei→ v j〉,e0 . . .ei ∈ Eclass 6=wasRevisionOf,v0 . . .v j ∈ V , is a path
of alternating nodes and edges that begins at a node of interest
v0 and ends at an ancestry node v j. An ancestry node is a
predecessor of a node of interest. Given that G is a DAG,
nodes v1, . . . ,v j−1 are also ancestry nodes. A backward trace
does not include any wasRevisionOf edges because such edges
represent non-causal relations.

A revision trace path, denoted by tr = 〈v0→ e0→ ··· →
ei→ v j〉,e0 . . .ei ∈ Eclass=wasRevisionOf,v0 . . .v j ∈ V , is a path
of edges that begin at a node of interest v0 and show the
revisions of that node’s object starting from an earlier revi-
sion node v j. These revisions are non-causal and are used to
identify changes to objects over time.

3.2 Model design choices
Given the aforementioned definitions, we now discuss the
design decisions we made in PICOSDN’s provenance model.
We show how these decisions were influenced by the limita-
tions found in previous work and how these decisions help us
solve the challenges outlined in § 2.2.

Data and execution partitioning We achieve data parti-
tioning with Entity objects by partitioning the data objects
specified in the controller’s API. For instance, the ONOS con-
troller’s host core service provides the API call getHosts(),
which returns a set of Host objects. Thus, a natural way to
partition data is to identify each Host object as a data partition.
The Entity subclasses are generalizable to common SDN con-
trol plane state objects as found in the representative ONOS,
OpenDaylight, and Floodlight SDN controllers.

Default flow rules can generate dependency explosions
because any incoming packet that does not match other flow



Table 2: Edges (relations) in the PICOSDN provenance graph model.

Valid edge (relation) class Relation meaning

Entity wasGeneratedBy Activity Creation of an SDN control plane state object

Activity used Entity Use of an SDN control plane state object
EventListener used Entity An event listener’s use of the SDN control plane state object
PacketProcessor used Packet A packet processor’s use of a data plane packet

Entity wasInvalidatedBy Activity Deletion of a data object within the SDN control plane state

Entity wasDerivedFrom Entity Causal derivation of one SDN control plane state object to another object
PacketIn wasDerivedFrom FlowRule Causal derivation of an incoming packet based on a previously-installed flow rule (e.g., default flow rule)
PacketIn wasDerivedFrom PacketOut Causal derivation of an incoming packet from one switch based on the outgoing packet of another switch

Entity wasRevisionOf Entity Non-causal revision (i.e., new version) of an SDN control plane state object

Activity wasAssociatedWith Agent Agency or attribution of an SDN control plane event

Packet wasAttributedTo SwitchPort Agency or attribution of a data plane packet with the respective switch port on which the packet was received
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switch=s1, xid=1
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(a) Data dependency explosion using default flow rules (used in
PROVSDN [52] and FORENGUARD [55]). All packets from switch
s1 that do not match any other flow rules become causally dependent
on the default flow rule, which leads to dependency explosion.

Switch s1
Port 1

Switch s1
Port 2

Switch s1
Port 3

(Default) Flow Rule
match=all traffic

action=send to controller
switch=s1, xid=1

Packet In
MACsrc=h1

switch:port=s1:1
xid=1, t=1

was
Attributed

To

Packet In
MACsrc=h2

switch:port=s1:2
xid=1, t=2

was
Attributed

To

Packet In
MACsrc=h1

switch:port=s1:1
xid=1, t=10

was
Attributed

To

Packet In
MACsrc=h3

switch:port=s1:3
xid=1, t=100

was
Attributed

To

(b) Data partitioning using packets and switch port agents (used
in PICOSDN). All packets per switch port are logically grouped
together.

Figure 4: Data partitioning models for flow rules. Ellipses
represent Entity nodes, and pentagons represent Agent nodes.

rules is sent to the controller for processing. All previously
unseen packets become causally dependent on a generalized
default flow rule, as shown in Figure 4a. To mitigate that
problem, our model links any such packets to the respective
edge ports that generated the packets, as shown in Figure 4b.

We achieve execution partitioning with Activity objects by
partitioning each execution of recurring event listeners and
packet processors into separate activities. Figure 5 shows the
differences between API-based modeling and event-based
modeling. With event-based modeling, we can more clearly
show which Entity objects were used, generated, or invalided
by a given Activity and mitigate the dependency explosion.
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(a) API-based modeling (used in PROVSDN [52]). If one is tracing
o2’s provenance via the API write at time t = 10, it will not be clear
that only the API read of o1 at t = 9 is causally associated with o2.
The other API reads at t = 1 and t = 2 represent false dependencies.

App XApp Y

All other event
listeners interested in o1

...

Control plane
object o1

used

Control plane
object o2

Event Listener
app=App X

t=9

wasGeneratedBy

wasAssociatedWithused

Event Listener
app=App Y

t=12

wasAssociatedWith used

(b) Event-based modeling (used in PICOSDN). If one is tracing
o2’s provenance via the event listener, it will be clear that o2 is
causally associated with o1 through App X’s event listener.

Figure 5: Comparison of execution partitioning models. El-
lipses represent Entity nodes, rectangles represent Activity
nodes, and pentagons represent Agent nodes.

Event listening SDN controllers dispatch events to event
listeners. In ONOS, for example, the host service dispatches
a HostEvent event (with the corresponding Host object) to
any HostEvent listener. We model an event’s data object as an
Entity node that was used by EventListener nodes, with each
event listener invocation represented as its own node.

Data plane model Figure 6 shows a diagram of data plane
activities between two switches, s1 and s2. Figure 6a shows
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Figure 6: Data plane model. 1: App X instructs the controller
to emit a data plane packet from switch s1. 2: Switch s1 emits
the data plane packet on its link towards switch s2. 3: Switch
s2 receives the incoming data plane packet and sends it to the
controller. 4: App Y processes the data plane packet.

the temporal order of a control plane activity (i.e., generation
of an outgoing data plane packet), followed by a data plane
activity (i.e., transmission of a data plane packet), followed by
another control plane activity (i.e., processing of an incoming
data plane packet). As shown in Figure 6b, a provenance
model without the implicit causality of the data plane shows
two separate subgraphs, which makes it impossible to perform
a causally meaningful backward trace.

To mitigate that problem, we use a data plane model that in-
cludes the network’s topology and related happens-before re-
lationships among activities. Our provenance model includes
a data-plane-based causal derivation in the relation PacketIn
wasDerivedFrom PacketOut to represent the causality.

Network identifiers Control plane objects generated from
data plane hosts pose a unique attribution challenge. Data
plane hosts can spoof their principal identities, or network
identifiers, relatively easily in SDN [28] as a result of net-
work protocols (e.g., the Address Resolution Protocol) that
do not provide authentication and SDN controller programs
that naïvely trust such information [53]. Ideally, each data
plane host would have its own principal identity, but that is
impossible if hosts can spoof their network identifiers.

To mitigate that problem, our provenance model offers two
features: edge ports as principal identities and network iden-
tifier revisions. To enable those abilities, we model each edge
port3 as a principal identity, or Agent node; Figure 4b shows
an example. As we assume in our threat model (described in

3As opposed to an internal port that links a switch with another switch.

detail in § 4) that switches are trusted, we can trust that the
data plane traffic originating in a particular switch port is ac-
tually originating in that port. Whether or not a host claiming
to have a particular identifier (e.g., MAC address) on that port
is legitimately located on that port cannot be verified from
the data plane alone. To account for that, we model identifier
changes by using the non-causal relation wasRevisionOf. It
allows for a succinct trace of identifier changes over time.

4 PICOSDN Threat Model

We assume that the SDN controller is trusted but that its
services and functionality may be subverted by apps or by
data plane input, which is similar to the threat model found
in related work [52, 55]. Attackers will try to influence the
control plane via cross-app poisoning attacks [52] or via cross-
plane poisoning attacks [13,24,41,49]. As a result, we assume
that all relevant attacks will make use of the SDN controller’s
API service calls, event dispatches, or both.

We further assume that switches and apps maintain their
own principal identities and cannot spoof their identifiers,
and indeed we can enforce that policy using a public-key
infrastructure (PKI) [47]. However, we assume that data plane
hosts can spoof their network identifiers (e.g., MAC address).

5 PICOSDN Design

Based on the provenance model described in § 3, we now
present the design of provenance-informed causal observation
for software-defined networking, or PICOSDN. PICOSDN
provides fine-grained data and execution partitioning to aid in
the identification of SDN attack causes. PICOSDN’s analysis
capabilities allow a practitioner to identify evidence of mali-
cious behavior, to pinpoint common causes, and to identify
the extent to which other malicious activities have occurred.

Figure 7 shows an overview of the PICOSDN architecture.
PICOSDN has two phases: a runtime phase (§ 5.1) that col-
lects relevant provenance information during execution, and
an investigation phase (§ 5.2) that analyzes the provenance.

PICOSDN is designed with the following goals in mind:

G1 Precise Dependencies. PICOSDN should reduce the units
of execution to remove false execution dependencies that
arise from long-running processes in the SDN control
plane. PICOSDN should also reduce the unit size of data
to remove false data dependencies.

G2 Unified Network Model. PICOSDN should leverage con-
trol and data plane activities, and thereby mitigate the
incomplete dependency problem.

G3 Iterative Analysis. PICOSDN should perform backward
and forward tracing to enable causal analysis of SDN at-
tacks. It should efficiently summarize network activities
and network identifier evolution.
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G4 Activity Completeness. PICOSDN should observe and
record any apps, controller, or data plane activity relevant
to network activities to ensure that it serves as a control
plane reference monitor.

5.1 Runtime Phase
During the network’s execution, PICOSDN’s runtime phase
records control plane activities in its collector and transforms
them into a lightweight graph by using its serializer.

Collector The provenance collector consists of three com-
ponents: wrappers around event dispatches and packet pro-
cessors, hooks on API calls, and an internal state tracker.

We have instrumented wrappers around the SDN con-
troller’s event dispatcher and packet processor. The prove-
nance collector uses these wrappers to maintain knowledge
about which event listener or packet processor is currently han-
dling the dispatch or processing, respectively; this achieves
goal G1.

We have instrumented hooks on each of the SDN con-
troller’s API calls; this achieves goal G4. For a single-
threaded controller, the reconstruction of the sequence of
events, packets, and API calls is straightforward. However,
in modern multi-threaded controllers, we also need a concur-
rency model to correctly link such calls to the right events.
For event dispatching, we assume the following concurrency
model: a particular event, ε1, is processed sequentially by
each interested event listener (i.e., ε1 is processed by listener
l1, then by l2); different events, ε1 and ε2, may be processed
concurrently (i.e., ε1 is processed by listener l1 followed by
l2, while concurrently ε2 is processed by listener l3 followed
by l4). That is the model used by ONOS4, among other SDN

4ONOS maintains several event dispatch queues based on the event type,
and each queue is implemented in a separate thread. Given that listeners
process a particular event sequentially, ONOS’s event dispatcher sets a hard

controllers. It allows PICOSDN’s provenance collector to use
hooks to correctly determine whether a particular API call
should link the use or generation of control plane objects to
the event listener (or packet processor) in execution at that
time. Hooking the API calls and linking them with the event
and packet wrappers in this way not only permits a trans-
parent interposition over all app and data plane interactions
with the control plane, but also avoids the limitations of prior
work [55] that requires app instrumentation.

The provenance collector includes an internal state tracker
that maintains knowledge of current events and control plane
objects to detect when such objects change. The internal state
is necessary to keep track of ephemeral objects’ uniqueness
that would not necessarily be captured by raw logging alone.
(See § 8 for a discussion about internal state storage costs and
external provenance storage costs.)

Serializer Once the provenance collector has determined
the correct provenance based on context, the provenance seri-
alizer writes out a lightweight serialized graph of nodes and
edges.

5.2 Investigation Phase
At some later point in time, PICOSDN’s investigation phase
uses the lightweight serialized graph as a basis for analysis.
The ingester de-serializes the graph, the cleaner removes
unnecessary provenance, and the topology augmenter incor-
porates the data plane model. The tracer answers practitioner
queries. Each component is designed to be modular.

5.2.1 Ingester, Cleaner, and Topology Augmenter

The ingestor reads in the serialized graph. As most nodes
contain additional details, the graph ingestor de-serializes the

time limit for each event listener to avoid indefinite halting.



Algorithm 1 Data Plane Model
Input: graph G , data plane topology states Dset , time window τw, headers

fields to match on H
Output: graph with data plane model G
Initialize: (V ,E)← G
1: for each D ∈Dset do
2: (N ,τstart ,τend)←D . Data plane topology graph N , epoch start

τstart , epoch end τend
3: (Nswitches,Nlinks)←N
4: for each pin ∈ Vclass=PacketIn do . Packet pin
5: if τstart < pin.ts < τend then . Timestamp pin.ts
6: for each pout ∈ Vclass=PacketOut do
7: if (pout .switch, pin.switch) ∈Nlinks then
8: if pout .H = pin.H then
9: if pout .ts < pin.ts and pin.ts− pout .ts≤ τw then

10: V ← V ∪{(pin, pout)}
11: G ← (V ,E)
12: return G

node’s dictionary into a set of key-value pairs. The cleaner
component can perform preprocessing to remove unneces-
sary or irrelevant nodes and edges. For instance, the cleaner
removes singleton nodes that are not connected to anything;
they may appear if objects are not being used. The cleaner
removes nodes that are not relevant to an investigation; for
instance, removing Statistic nodes about traffic counts may
be useful if the investigation does not involve traffic counts.
The topology augmenter adds edges into the graph (e.g., was-
DerivedFrom relations between PacketIns and PacketOuts) to
define the data plane model; doing so achieves goal G2.

PICOSDN’s data plane model algorithm is shown in Algo-
rithm 1. We assume that the data plane’s topology can vary
over time, and for each variation, we say that the state is an
epoch consisting of a topology that is valid between a start
time and an end time (lines 1–2). For each PacketIn, we want
to determine if it should link to a causally related PacketOut
(line 4). PICOSDN filters temporally based on the current
epoch (line 5), and it checks all PacketOuts during that epoch
(line 6). We consider a PacketOut to be causally related to the
PacketIn if all of the following conditions are met: 1) there is
a link between the outgoing and incoming switches (line 7);
2) the specified packet headers are the same for both packets
(line 8); 3) the PacketOut “happened before” the PacketIn
(line 9); and 4) the timestamp differences between the Pack-
etOut and PacketIn are within a specific threshold (line 9).

As PICOSDN is modular, Algorithm 1’s data plane model
can be replaced as needed. For instance, header space analy-
sis [30] uses functional transformations to model how packets
are transformed across the data plane (e.g., packet modifi-
cations), and P4 [7] proposes a programmable data plane.
Practitioners can write their own data plane model compo-
nents that take those transformations into account.

Algorithm 2 Common Ancestry Trace
Input: graph G , evidence set N
Output: agent set Ag, activity set Ac, and entity set En
Initialize: (V ,E)← G , Ag← /0, Ac← /0, En← /0, A← V
1: for each e ∈ E do . Remove non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: for each n ∈ N do . Evidence n (note: n ∈ V ,N ⊂ V )
5: An← getAncestors((V ,E),n) . Set of ancestor nodes An
6: A← A∩An . Common ancestor set A
7: for each a ∈ A do . Common ancestor a
8: if a is an Agent node then
9: Ag← Ag∪a

10: else if a is an Activity node then
11: Ac← Ac∪a
12: else
13: En← En∪a
14: return (Ag,Ac,En) . Ag⊂ V , Ac⊂ V , En⊂ V

Algorithm 3 Iterative Backward-Forward Trace
Input: graph G , evidence n, root r
Output: affected difference function ∆ : V →P(V )
Initialize: (V ,E)← G ; ∆(i)← /0,∀i ∈ V
1: for each e ∈ E do . Remove non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: An← getAncestors((V ,E),n) . Evidence’s ancestor set An
5: Dr ← getDescendants((V ,E),r) . Root’s descendant set Dr
6: Vintermediate← An ∩Dr
7: for each vi ∈ Vintermediate do
8: ∆(i)← Dr \getDescendants((V ,E),vi)

9: return (Vintermediate,∆)

5.2.2 Tracer

After the graph is prepared, the tracer component answers
investigative queries. PICOSDN provides facilities to answer
queries related to root cause analysis, network activity summa-
rization, and network state evolution; these facilities achieve
goal G3. We now describe each kind of query and under what
scenarios a practitioner would want to use each kind.

As G is a DAG, we assume the use of standard graph func-
tions in Algorithms 2–5 that can determine the ancestor and
descendant nodes (i.e., progeny) of a given node n, denoted by
getAncestors(G ,n) and getDescendants(G ,n), respectively.

Root cause analysis After an attack, a practitioner wishes
to investigate the attack’s causes so as to determine what
changes should be made to prevent such attacks from reoccur-
ring. We assume that a practitioner has evidence of incorrect
behavior, wants to find common causes, and wants to explore
whether other evidence of incorrect behavior also exists. PI-
COSDN provides two interrelated algorithms to do achieve
these goals: common ancestry tracing (Algorithm 2) and
backward-forward tracing (Algorithm 3). Practitioners can
iteratively use these tools to determine root causes efficiently.

Algorithm 2 shows the common ancestry tracing. We as-
sume that our practitioner can pinpoint evidence of incorrect



Algorithm 4 Network Activity Summarization
Input: graph G
Output: set of (activity a, flow rule fout , packet pin, data plane packets Pin)
Initialize: (V ,E)← G , S← /0

1: for each e ∈ E do . Remove non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: for each a ∈ Vclass=Activity do
5: fout ← null, pin← null, Pin← null
6: Pin← getAncestors((V ,E),a)
7: for each p ∈ Pin do
8: if p /∈ Vclass=PacketIn then
9: Pin← Pin \{p}

10: if 〈a →
(
v ∈ Vclass6=Activity or e ∈ E

)∗ → p ∈ Vclass=PacketIn〉 back-
ward trace path exists then

11: pin← p
12: if 〈 f ∈ Vclass=FlowRule →

(
v ∈ Vclass6=Activity or e ∈ E

)∗ → a〉 back-
ward trace path exists then

13: fout ← f
14: S← S∪{(a, fout , pin,Pin)}
15: return S

behavior, such as a set of packets or flow rules that appear
suspicious. Our practitioner’s goal is to see if such evidence
has anything in common with past history. PICOSDN starts
by discarding non-causal edges in the graph (lines 1–3). Then,
for each piece of evidence, PICOSDN computes its set of
ancestor nodes and takes the intersection of that ancestry with
the ancestries of all previous pieces of evidence (lines 4–6).
Once all the pieces of evidence have been examined, the set of
common ancestors is partitioned into agent, activity, and entity
nodes (lines 7–13). Thus, PICOSDN provides data-centric,
process-centric, and agent-centric answers.

Algorithm 3 shows the iterative backward-forward trac-
ing. Our practitioner has a piece of evidence and a suspected
root cause (derived, perhaps, from Algorithm 2). Our prac-
titioner’s goal is to iteratively determine how intermediate
causes (i.e., those causes that lie temporally in between the
evidence and the root cause) impact the evidence and other
effects on the network’s state. PICOSDN starts by discarding
non-causal edges in the graph (lines 1–3). For the piece of
evidence, PICOSDN determines all of its ancestors, or the
set of all causally related entities, activites, and agents re-
sponsible for the evidence (line 4). For the suspected root
cause, PICOSDN determines all of its descendants, or the set
of all the entities and activities that the root cause affected
(line 5). PICOSDN takes the intersection of those two sets
(line 6) to examine only the intermediate causes that occurred
as a result of the root cause. For each intermediate cause,
PICOSDN derives the set of affected entities and activities
that the root cause affected that the intermediate cause did
not affect (lines 7–8). In essence, that lets the practitioner
iteratively examine intermediate effects at each stage.

Network activity summarization One general provenance
challenge is that graphs can become large and difficult to inter-

Algorithm 5 Network Identifier Evolution
Input: graph G , network identifier i
Output: revision trace path tr , affected nodes function F
Initialize: (V ,E)← G ; Estash← /0; F(i)← /0,∀i ∈ V
1: for each e ∈ E do . Remove and stash non-causal edges
2: if e is a wasRevisionOf edge then
3: E ← E \{e}
4: Estash← Estash ∪{e}
5: n← getMostRecentNode(V , i)
6: tr ← 〈n〉
7: F(n)← getDescendants((V ,E),n)
8: while n← getNextNode(Estash) and n is not null do
9: tr.append(wasRevisionOf,n)

10: F(n)← getDescendants((V ,E),n)
11: return (tr,F)

pret even for simple activities, and that creates fatigue when
one is analyzing such graphs for threats and attacks [20].
PICOSDN provides an efficient network-specific summariza-
tion.

Algorithm 4 shows the summarization approach. Our prac-
titioner’s goal is to answer questions of the form “Which
data plane activities (i.e., packets) caused flow rules to be or
not be installed?” PICOSDN starts by discarding non-causal
edges in the graph (lines 1–3). It collects each event listener or
packet processor activity (line 4). For each activity, it derives
all of the PacketIn packets that causally affected the activity
(lines 5–9). Then, PICOSDN determines whether a PacketIn
is a direct5 cause by computing a backward trace path; if it is
a direct cause, the packet is marked (lines 10–11). Similarly,
PICOSDN determines whether a FlowRule is a direct effect
of the activity; if it is, the flow rule is marked (lines 12–13).

Algorithm 4 allows practitioners to efficiently investigate
instances in which flow rules were not created, too. For ex-
ample, if an event listener used a packet but did not generate
a flow rule, the resulting value for fout would be null. Algo-
rithm 4 also derives a set of all data plane PacketIn packets
causally related to each activity; as we show later in § 7, this
information is useful for diagnosing cross-plane attacks.

Network state evolution Given the attribution challenges
of data plane host activities, practitioners will want to in-
vestigate whether any of the pertinent identifiers have been
spoofed. Such spoofing can have systemic consequences on
subsequent control plane decisions [13,24,49,53]. PICOSDN
efficiently tracks network identifier evolution (i.e., the was-
RevisionOf relation) and provides an algorithm to query it
(Algorithm 5).

Algorithm 5 shows the network identifier evolution ap-
proach. Our practitioner’s goal is to see whether any identi-
fiers have evolved over time as a result of malicious spoof-
ing, as well as the extent of damage that such spoofing has
caused. PICOSDN starts by stashing non-causal edges in the

5In other words, without any intermediate Activity nodes in between. How-
ever, intermediate data derivations between Entity objects are permissible.



Table 3: List of PICOSDN hooks (i.e., PICOSDN API calls).

PICOSDN API call Description

recordDispatch(activity) Mark the start of an event dispatch or
packet processing loop

recordListen(activity) Mark the demarcation (i.e., start of
each loop) of an event being listened
to or a packet being processed

recordApiCall(type,entity) Record a control plane API call of a
type (i.e., create, read, update, delete)
on an entity (or entities)

recordDerivation(entity,entity) Record an object derived from an-
other object

graph, thus removing them from causality-related processing,
but keeping them for reference (lines 1–4). For a given net-
work identifier, PICOSDN determines the node most recently
linked to that identifier (line 5) and adds it to a revision trace
path (line 6). PICOSDN derives that node’s descendants to
determine the extent to which that network identifier causally
affected other parts of the network state (line 7). That process
is repeated back to the identifier’s first version (lines 8–10).

Algorithm 5 produces a concise representation of an identi-
fier’s state changes over time. That allows the practitioner to
easily determine when an identifier may have been spoofed,
and that respective node in time can be used in Algorithm 3
as a root cause to perform further iterative root-cause analysis.
Furthermore, the affected nodes that are returned by Algo-
rithm 5 can be used as evidence in the common ancestry trace
of Algorithm 2.

6 Implementation

We implemented PICOSDN in Java on ONOS v1.14.0.
Our implementation is available at https://github.com/
bujcich/PicoSDN. We modified ONOS in several key loca-
tions. We created a set of PICOSDN API calls, which are
listed in Table 3. We created Java classes to represent Activity
and Entity objects, and we made them into superclasses for
relevant ONOS classes (e.g., ONOS’s Packet superclass is En-
tity). We wrapped the ONOS event dispatcher and packet pro-
cessor by using the recordDispatch() and recordListen() calls,
which represented the execution partitioning of PICOSDN.
We hooked the ONOS core services’6 public API calls by
using the recordApiCall() calls.7 For a given core service API
call, if the return value was iterable, we marked each object
within the iterable object with its own separate provenance

6In ONOS, these core services are represented by classes that end in
*Manager or *Provider. For instance, ONOS has a HostManager class and a
HostProvider class that include public API calls related to hosts.

7As ONOS does not provide a reference monitor architecture that would
allow us to wrap one central interposition point across all API calls, we had
to add recordApiCall() hooks across 141 API calls to ensure completeness.

record. For certain data whose processing spanned multi-
ple threads, we used recordDerivation() calls to maintain the
causal relations across threads. We implemented the ingester,
modifier, and tracer on top of the JGraphT library.

Because of our design decisions, described in § 5.1, we did
not need to perform an analysis on or make any modifications
to the ONOS apps. Practitioners do not need to instrument
each new app that they install in their network. Furthermore,
PICOSDN’s API and classes allow PICOSDN to be easily
updated as new core services and objects are implemented
in ONOS. Although we implemented PICOSDN on ONOS,
the same conceptual provenance model and design can be
implemented with minimal modifications on any event-based
SDN controller architecture, and indeed the most popular con-
trollers (e.g., ODL and Floodlight) all use such architectures.

7 Evaluation

We now evaluate PICOSDN’s performance and analysis capa-
bilities. We have examined its performance overhead in terms
of latency and storage (§ 7.1). We used recent SDN attacks to
show that PICOSDN can capture and explain a broad diver-
sity of SDN attacks (§7.2). We implemented all topologies
using Mininet.8 We ran experiments using a workstation with
a four-core 3.30-GHz Intel Core i5-4590 processor and 16
GB of memory.

7.1 Performance Evaluation
Given the latency-critical nature of control plane decision-
making, we benchmarked the latency that PICOSDN imposed
on common ONOS API calls (Figure 8a). To further under-
stand these costs, we microbenchmarked PICOSDN’s hooks
(Figure 8b) and benchmarked the overall latency imposed by a
reactive control plane configuration (Figure 8c) as a function
of the data plane’s network diameter. We also measured the
costs to store provenance graphs (Table 4).

Benchmarks on ONOS Figure 8a shows the average laten-
cies of common ONOS API calls with and without PICOSDN
enabled. These calls were called most often in our security
evaluation (§ 7.2) and relate to flow rules, hosts, and packets.
Although certain calls generated significantly greater latency,
that was expected for cases in which iterable objects require
generation of individual provenance records.

Microbenchmarks To further analyze the benchmark re-
sults, we microbenchmarked PICOSDN’s hooks (i.e., PI-
COSDN’s API calls). Figure 8b shows the average latencies of

8We chose Mininet because it is common in prior work (e.g., [52, 55])
and because it causes PICOSDN’s runtime phase to record the same kind and
amount of provenance information that would be captured in a real network.
Real networks may differ in terms of imposed latency.

https://github.com/bujcich/PicoSDN
https://github.com/bujcich/PicoSDN
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Figure 8: PICOSDN latency performance results. (Error bars represent 95% confidence intervals.)

the PICOSDN API calls listed in Table 3, with the recordApi-
Call() calls broken down by call type. As shown in Figure 8b,
event listening and dispatching are fast operations. We ex-
pected API calls to be slower, given the tracking operations
within PICOSDN’s internal state.

Overall latency We also measured the overall latency that
PICOSDN imposes on control plane operations. We wanted
to see what the additional incurred latency would be from
the perspective of host-to-host communication, or the time-
to-first-byte metric. This metric measures the total round-trip
time (RTT) measured between data plane hosts (e.g., via the
ping utility) for the first packet of a flow. The RTT captures
the latency of both data plane processing and control plane
decision-making.

In reactive control planes, the first packet of a flow suffers
high latency because it does not match existing flow rules, but
once matching flow rules have been installed, the remaining
packets of the flow use the data plane’s fast path. Although
SDN configurations can be proactive by installing flow rules
before any packets match them, we measured a reactive con-
figuration because it represents the worst-case latency that is
imposed if the controller must make a decision at the time it
sees the first packet. (See § 8 for a discussion of the differ-
ences.) In addition, the network’s diameter (i.e., the number
of hops between data plane hosts) affects latency in reactive
configurations if the first packet must be sent to the controller
at each hop. Thus, we measured a reactive configuration and
varied the number of hops to determine the effect on latency.

Figure 8c shows the average overall latencies imposed with
and without PICOSDN on the first packet, varied by the num-
ber of hops. We performed each experiment over 30 trials. In
contrast to prior work [52, 55], we parameterized the number
of hops traversed to reflect different network topology diame-
ters. We found that PICOSDN increased the overall latency on
average from 7.44 ms for 1-hop (i.e., same-switch) topologies
to 21.3 ms for 10-hop topologies. That increase was expected,
given that additional provenance must be generated for longer
routes. For long-running flow rules, the one-time latency cost

in the flow’s first packet can be amortized. Thus, we find
PICOSDN acceptable for practical implementation.

Storage costs Internally, PICOSDN maintains only the min-
imum state necessary to keep track of object changes. Thus,
the state is as large as the number of objects representing
the network’s flow rules, topology, and system principals
(e.g., switches and hosts) at a given time.

We investigated the external provenance graph storage costs
based on the network’s characteristics, and we summarize our
results in Table 4. Given the network diameter’s impact on
latency in reactive control planes, we focused the analysis on
the network diameter’s impact on storage costs. We set up a
bidirectional, reactive, end-to-end flow between two hosts, and
we parameterized the number of hops between those hosts. We
defined the storage cost as being all of the related provenance
needed to explain the origins of the connectivity between
those two hosts (e.g., flows, packets, hosts, topologies, events,
apps, switch ports). We compared costs using the raw output
of the runtime phase (“before cleaning”) and the cleaned
graph used for investigation (“after cleaning”). Since such
storage reflects a single bidirectional flow, we considered
the scalability of an enterprise-scale workload of 1,000 new
bidirectional flows per second [55].

We found that the cleaned graph requires a significantly
smaller amount of persistent storage space, with reductions of
95 to 98 percent. We optimized what provenance was kept by
removing orphan nodes, redundant edges, activities without
effects, and activities that did not impact flows; these options
are configurable by practitioners. We found that the storage
costs increased as the number of hops increased. This was
expected, given that more objects (e.g., packets) are gener-
ated and used with longer routes. PICOSDN generates an
estimated 4 to 15 GB/h for an enterprise-scale network with
1,000 new bidirectional flows per second. Further provenance
storage reduction can be implemented outside PICOSDN
using existing provenance storage reduction systems and tech-
niques [9, 21, 34].

We compare PICOSDN’s storage requirements with the



Table 4: PICOSDN storage costs of a bidirectional flow’s provenance.

Hops Graph before cleaning Graph after cleaning Reduction in storage Estimated storage
cost of 1,000 new
bidirectional flows
per second [55]

# Nodes # Edges Data [KB] # Nodes # Edges Data [KB] Nodes Edges Data

1 822 400 23.0 67 95 1.1 -91.9% -76.3% -95.2% 3.96 GB/h
2 2,158 2,298 62.9 146 363 1.7 -93.2% -84.2% -97.3% 6.12 GB/h
5 4,299 2,674 110.2 267 495 2.6 -93.8% -81.5% -97.6% 9.36 GB/h

10 11,742 7,319 289.8 538 1,175 4.3 -95.4% -84.0% -98.5% 15.48 GB/h

most closely related work. FORENGUARD [55] generates 0.93
GB/h of metadata for a 10-switch, 100-host topology with
1,000 new flows per second. Although PICOSDN has higher
storage costs, the additional metadata allows PICOSDN to
handle more sophisticated analyses that FORENGUARD does
not provide (e.g., network identifier evolution, common ances-
try trace). We illustrate this in our security evaluation section
(§ 7.2). PROVSDN [52] does not evaluate storage costs. As
the graphs produced by PROVSDN are optimized for IFC se-
curity label generation rather than for explaining root causes,
the necessary metadata that must be kept (and, thus, storage
costs) are not directly comparable to the metadata that PI-
COSDN keeps.

7.2 Security Evaluation

We used representative vulnerabilities found with
EVENTSCOPE [53] and TOPOGUARD [24] to evalu-
ate PICOSDN’s security efficacy.

EVENTSCOPE CVE-2018-12691 We now revisit the mo-
tivating cross-plane attack example described in § 2.1. Our
practitioner now examines the provenance data collected dur-
ing the attack by PICOSDN’s runtime phase, which is shown
in abbreviated form in Figure 2b.

As our practitioner knows that hosts h1 and h2 communi-
cated, they use the network activity summarization to derive
the set of flow rules related to these hosts. Among the re-
turned set, the practitioner sees the following: 1) the flow rule
from fwd that allowed communication (fwd, f3, p4,{p3, p2});
2) acl’s failure to install a flow denial rule, resulting from an
invalid IP address (acl,null,null,{p1}); and 3) acl’s failure to
install a flow denial rule, resulting from the host event type’s
not being handled (acl,null,null,{p2}).

The practitioner uses the common ancestry trace of fwd
and acl’s actions to determine the common ancestors of the
discovered flow rules. Among this set, the common ancestor
is the switch port agent s1 : port 1. Now equipped with a set
of possible root causes, the practitioner issues a backward-
forward trace from f3 to the root of the switch port agent to
see the differences in descendants (i.e., impacts) that each
intermediate cause affects. That allows the practitioner to
discover that the relevant root cause can be traced back to

the spoofed packet p1. Starting there, the practitioner’s for-
ward traces show the effects that p1 has on the network’s
subsequent activities, such as the corrupted host object h1(v1).
PICOSDN identifies the root cause and effects of the spoofed
packet, thus letting the practitioner know that host h1 should
be disconnected.

Improvements upon prior work: FORENGUARD and
PROVSDN do not link data plane activities together. As a
result, practitioners would miss the necessary causal depen-
dency that is critical for understanding this attack’s root cause.
Furthermore, FORENGUARD and PROVSDN cannot diagnose
causes related to the absence of effects (e.g., acl’s failure to
install flow rules). As a result, practitioners using these tools
would not be able to diagnose the class of attacks that use
the absence of effects to accomplish the attacker’s objectives.
By contrast, PICOSDN’s data plane model clearly links the
data plane packets that result from fwd’s installation across
switches (Figure 2b). PICOSDN’s network activity summa-
rization efficiently identifies the activities that lack effects
(i.e., fout is null). In this attack, practitioners can see the pres-
ence of a potential cause (e.g., the execution of acl) and the
absence of an expected effect (e.g., a flow denial rule).

EVENTSCOPE CVE-2019-11189 We evaluated another
vulnerability found by EVENTSCOPE, CVE-2019-11189.
This attack bypasses an intended access control policy. It
uses a malicious host to spoof a network identifier of a victim
host, which causes installed flow rules associated with the
access control policy to be uninstalled by the host mobility
application, mobility. We refer the reader to [53] for a detailed
description of the attack’s mechanism.

PICOSDN is able to capture the installation of the flow
rules associated with the access control policy, the triggering
of the host mobility application because of spoofed pack-
ets, and the removal of the flow rules by the host mobility
application. A practitioner who notices that undesired commu-
nication occurred between the malicious host and the victim
host can use the graph to understand the causal relationships
among all three activities and to pinpoint the spoofed packet
as the actual root cause.

Improvements upon prior work: FORENGUARD and
PROVSDN do not explicitly model the deletion of control
plane state as a graphical relation. As a result, practitioners
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Figure 9: Relevant features of the graph from the cross-app
attack. The graph shows that trigger modifies packets before
fwd receives them.

who use these tools would not be able to perform causal analy-
sis over the deletions’ dependencies. By contrast, PICOSDN’s
wasInvalidatedBy relation links control plane state objects to
control plane activities. That augments PICOSDN’s capabil-
ities to trace common ancestors and to trace backward and
forward iteratively. In this example, a practitioner sees that
the removed flow rule can be tracked backward to mobility’s
use of a modified (i.e., spoofed) host object.

PROVSDN Cross-App Poisoning Attack We also use PI-
COSDN to analyze a cross-app poisoning attack. This at-
tack uses a malicious app to modify packets in the packet-
processing pipeline, which subsequent apps use to make con-
trol plane decisions. We refer the reader to [52] for a detailed
description of the attack’s mechanism.

Figure 9 shows the important features of the graph. We
can see that the packet changes as it is handed off from the
triggering trigger (i.e., malicious) app to the forwarding fwd
(i.e., benign) app in the processing pipeline. Since PICOSDN
uses an event-based model, we can reduce the false dependen-
cies. For instance, for each instance of trigger’s event handler,
the precise API calls that were used are embedded in the used
and wasGeneratedBy relations for API read and write calls,
respectively, on the PacketIns.

To understand how the attack occurred, a practitioner issues
a network activity summarization query to find malicious flow
rules and uses them in the common ancestry trace to look at
the trigger agent. The practitioner then issues an iterative
backward-forward trace query on the trigger app to determine
the extent to which trigger has caused other undesired network
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Figure 10: Relevant features of the host migration attack’s
graph showing the evolution of hosts that claimed to be h2.

activities. PICOSDN identifies the root cause and other effects
of trigger, thus informing the practitioner that the app should
be removed.

Improvements upon prior work: FORENGUARD and
PROVSDN do not provide common ancestry tracing ca-
pabilities. As a result, practitioners using FORENGUARD
or PROVSDN would need to manually determine overlap-
ping root causes, which could significantly hinder any time-
sensitive investigations, increase the attackers’ dwell time,
and increase the damage [12]. By contrast, PICOSDN uses
its common ancestry trace in this example to efficiently deter-
mine that all of the malicious flows have trigger in common.

TOPOGUARD Host Migration Attack We consider an-
other cross-plane-based host migration attack. This attack
uses a malicious data plane host to trick the control plane
into believing that a victim host has changed its location. We
assume a three-host (h1, h2, and h3) topology with one switch
(s1). Host h3 attempts to masquerade as host h2 so as to trick
other hosts (e.g., h1) into sending traffic that was meant for
h2 to h3 instead. We refer the reader to [24] for a detailed
description of the attack’s mechanism.

Our practitioner queries the network identifier evolution
for h2. Figure 10 shows a partial provenance graph of the
relevant features. The evolution shows that h2 appears to have
switched network ports from s1’s port 2 to port 3; in reality,



h3 spoofed h2’s identifier. The query returns the descendants
(i.e., the impacts) that each version of the identifier has had
on the network. For instance, during the time that the spoofed
location of h2 was being used between times t = [5,10], old
flow rules that directed traffic to h2 were removed by the host
mobility app. The practitioner can now efficiently see the at-
tack’s ramifications at each stage because of the combination
of the network identifier evolution and the forward-tracing ca-
pabilities. PICOSDN identifies a cause in the spoofed packet
used by the host provider, and also finds the other effects
of the spoofed packet. The practitioner thus disconnects the
malicious host from port 3.

Improvements upon prior work: FORENGUARD and
PROVSDN do not store the additional relations needed to
track network identifier evolution, and they do not provide
the forward-tracing capabilities to determine the effects that
spoofed identifiers have on other network activities. As a
result, practitioners using these tools would not be able to
quickly assess the extent of damage. By contrast, PICOSDN’s
network identifier evolution tool shows the network effects at
each stage of identifier change.

8 Discussion

Reactive and proactive configurations PICOSDN is de-
signed to work for both reactive and proactive SDN control
plane configurations. We used reactive configurations in our
case studies because recent SDN attacks have leveraged re-
active configurations [24, 49, 53, 62], but we argue that PI-
COSDN is well-suited for proactive configurations, too. Proac-
tive configurations install flow rules ahead of time. However,
the time at which flow rules are inserted may be far removed
from the time when data plane packets exercise these rules.
As a result of the time gap, manual tracing by a practitioner
would be a difficult task. That provides the motivation to
create quality network forensics tools such as PICOSDN to
maintain history.

Deployment Considerations Our work complements ex-
isting detection and investigation tools in the security monitor-
ing pipeline. PICOSDN does not automatically detect attacks,
but instead provides investigators with insight into control
plane modifications and analysis of causal dependencies. This
is a critical step for enterprise security, particularly as threat
alerts are known to suffer from high rates of false alarm; some
reports show that more than half of alerts are false alarms, and
as few as 4% are properly investigated [16]. PICOSDN thus
addresses a vital gap in existing investigation products; one
such application of this technology would be to integrate it
into existing SIEM products, e.g., Splunk, to allow analysts to
observe SDN-related intelligence streams alongside other net-
work telemetry data. SDN attack detection in particular is an
open challenge, with past work examining expected semantic

behavior [13, 24, 49] and pattern recognition of anomalous
features or behavior [32,53], but these pursuits are orthogonal
to PICOSDN’s aims.

9 Related Work

SDN control plane insight FORENGUARD [55] is the prior
effort that is most closely related to PICOSDN. Like FOREN-
GUARD, PICOSDN provides root cause analysis capabilities
for SDN attacks. PICOSDN extends those capabilities with
a data plane model and mitigates the data dependency explo-
sions caused by default flow rules. PROVSDN [52] focuses on
information flow control enforcement rather than root cause
analysis, so its analysis capabilities are limited; it also uses
an API-centric model rather than an event-centric model for
execution partitioning, resulting in false dependencies that
would not be generated in PICOSDN’s provenance model.
GitFlow [15] proposes a version control system for SDN; that
influenced our decision to include revision relations. AIM-
SDN [14] outlines the challenges in SDN, influencing our
decisions on how to represent agency. Ujcich et al. [54] ar-
gue why provenance is necessary to ensure a secure SDN
architecture.

Declarative network provenance has shown promise in au-
tomated bug removal [58], differential provenance [10, 11],
meta provenance [57], and negative provenance [60, 61]. The
various solutions use a declarative paradigm [36], which re-
quires nontrivial translation for apps written in the imperative
paradigm. A benefit of declarative programs is that they inher-
ently capture the data plane model, which PICOSDN provides
but PROVSDN and FORENGUARD do not.

The general research space of SDN security, including the
set of potential attack vectors, is large and well-studied; we
refer the reader to [63] for a survey of the area.

SDN debugging and verification We outline existing SDN
debugging and verification tools, as they are complementary
to provenance-based causal analysis tools.

Control-plane debugging tools include FALCON [35],
Net2Text [6], among others. They record the network’s state
to identify unusual behavior and replay suspicious activities
in a simulated environment. However, they assume that ac-
tivity traces are dependent upon all previous states and/or
inputs, whereas PICOSDN avoids that assumption through
its dependency partitioning.

Data plane verification tools include Cocoon [48] and SD-
NRacer [43], and BEADS [27], among others. They prevent
instantiation of incorrect configurations in the network ac-
cording to a predefined policy, but such tools’ prevention
capabilities are dependent upon correct policy specifications.
PICOSDN records known and unknown attacks so that prac-
titioners can investigate how such attacks occurred.



Provenance and causality analysis The dependency ex-
plosion problem has been studied for host applications [39],
binary analysis [22, 33], and host operating systems [20, 26,
29, 31, 37, 38, 40]. Provenance for attack causality analysis
has also been well-studied [2–4, 19, 25, 42, 46, 50, 51, 56, 59].
PICOSDN’s primary contributions to this area include 1) a
provenance model for SDN control and data planes that fo-
cuses on SDN-specific dependency explosion factors (e.g., de-
fault flow rule dependencies), and 2) relevant attack analy-
sis techniques of particular interest to network practitioners
(e.g., network summarization).

10 Conclusion

We presented PICOSDN, a provenance-informed causal ob-
servation tool for SDN attacks. PICOSDN leverages a fine-
grained provenance model to allow practitioners to recon-
struct past control and data plane activities, to analyze them
for root causes when control plane attacks occur, to under-
stand the scope of attacks’ effects on other network activities,
and to succinctly summarize the network’s activities and evo-
lution. We evaluated PICOSDN using recent control plane
attacks, and we found that PICOSDN is practical for runtime
collection and offline analysis.
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