
Leveraging Textual Specifications for Grammar-based Fuzzing of Network
Protocols

Samuel Jero1, Maria Leonor Pacheco1, Dan Goldwasser1, Cristina Nita-Rotaru2
1Purdue University

2Northeastern University
{sjero, pachecog, dgoldwas}@purdue.edu

c.nitarotaru@neu.edu

Abstract

Grammar-based fuzzing is a technique used to find soft-
ware vulnerabilities by injecting well-formed inputs gener-
ated following rules that encode application semantics. Most
grammar-based fuzzers for network protocols rely on human
experts to manually specify these rules. In this work we study
automated learning of protocol rules from textual specifica-
tions (i.e. RFCs). We evaluate the automatically extracted
protocol rules by applying them to a state-of-the-art fuzzer for
transport protocols and show that it leads to a smaller number
of test cases while finding the same attacks as the system that
uses manually specified rules.

Introduction
Ensuring that protocol implementations are free of bugs and
vulnerabilities is an important problem, given the reliance
of virtually any application on computer networks. One test-
ing approach used to tackle this problem is protocol fuzzing,
which generates and injects packets into the protocol stream.
To successfully apply this method and increase the likeli-
hood of finding protocol vulnerabilities, the generated pack-
ets need to be crafted carefully. A technique that has been
shown to be effective in creating these attack packets is
grammar-based fuzzing (Jero, Lee, and Nita-Rotaru 2015;
Abdelnur, State, and Festor 2007; Banks et al. 2006; Wang
et al. 2013; Jero et al. 2017). In this technique, attack pack-
ets are generated following rules that encode protocol se-
mantics. For example, in the TCP protocol, bytes 17 and 18
contain a checksum of the rest of the TCP header. An in-
jected packet must contain the correct checksum in order to
pass the trivial checksum check and reach the part of the
code that it intends to test.

The effectiveness of grammar-based protocol fuzzers de-
pends significantly on the protocol rules they use. Unfortu-
nately, these rules are usually created manually by an expert
and are not easily transferable from one protocol to another.
Our main observation is that there is an untapped resource
of information available for network protocols in the form
of natural language specification documents (e.g. RFCs).
With the recent interest in using data to solve problems in
several fields, we ask the question: “Can we leverage natu-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

ral language specifications of protocols to improve protocol
fuzzers?”

In this paper, we study how to improve the coverage and
effectiveness of grammar-based fuzzers for network proto-
cols through automated learning of protocol rules from ex-
isting textual documentation. We have two design goals: (1)
minimize the manual supervision effort required for training
and (2) adapt to new protocols without re-training.

Extracting protocol information is often not straight-
forward. Protocol specifications intended for human read-
ers capable of understanding context and intent are often
too ambiguous for simple rule-based extraction. Even rely-
ing on the recent advances in NLP technology by applying
“off-the-shelf” NLP tools can result in reduced performance
and brittle applications due to domain differences. The per-
formance of these tools, typically trained on newswire data,
drops significantly when applied to technical specification
documents. Figure 1 demonstrates this point, showing a mis-
classification of the word “points” as a noun, common in the
newswire data used for training, but incorrect in the given
context. Note that this mistake propagates to other steps in
the pipeline, resulting in incorrect chunking and parsing de-
cisions. Our main technical challenge is to adapt information
extraction to the new domain without incurring the high cost
of providing supervision for each individual protocol.

Our contributions are as follows: (1) We define the prob-
lem of protocol grammar extraction as a set of NLP tasks.
The grammar is designed to capture relevant aspects and
consists of the protocol’s header fields and their properties.
(2) We suggest and evaluate an NLP framework for these
tasks, designed to reduce manual supervision effort when
adapting to new network protocols. Unlike previous work
that applied transformation rules to the output of NLP tools
directly, we propose a lightweight zero-shot learning frame-

Figure 1: NLP analysis: two possible outcomes for the
senses of the word “points” (top: verb, bottom: noun).



Test	cases
Implementation

Attacks

Grammar-based	
test	generation

Testing	environment

Manager

Target	binary

Expert

Search	
strategy

Attack
detection

Protocol
grammar

Figure 2: Grammar-based fuzzing.

work which can adapt to the specific properties of the net-
working domain. (3) We demonstrate the usefulness of the
information extracted by our NLP framework by applying it
to a transport protocol fuzzer. We compare its performance,
when using manually and automatically extracted protocol
information, on two transport protocols and find that our au-
tomatically generated protocol grammars are as effective in
identifying attacks as manually created grammars, while of-
ten enabling improved efficiency.

Related Work
Previous work has applied NLP techniques to related prob-
lems. WHYPER (Pandita et al. 2013) and DASE (Wong et
al. 2015) apply NLP techniques to identify sentences that
describe the need for a given permission in a mobile applica-
tion description and extract command-line input constraints
from manual pages, respectively. The work in (Witte et al.
2008) used documentation and source code to create an on-
tology allowing the cross-linking of software artifacts rep-
resented in code and natural language on a semantic level.
These approaches focus on a small, predefined set of enti-
ties; analyze small, structured sentences; and use rule-based
approaches. Other works infer protocol specifications using
network traces (Comparetti et al. 2009; Wang et al. 2011;
Cho et al. 2010), program analysis (Kothari, Millstein, and
Govindan 2008; Cho et al. 2011; Lin et al. 2008), or model
checking (Lie et al. 2001; Corbett et al. 2000). These ap-
proaches rely extensively on input from human experts and
do not easily generalize to new software or protocols.

Problem Definition
Protocol Grammar-based Fuzzing Fuzzing is a tech-
nique used for finding software vulnerabilities by injecting
random inputs and then observing the output of the pro-
gram under test. In grammar-based fuzzing the injected in-
puts follow rules encoding relevant system properties. For
network protocols, inputs consist of packets, and rules repre-
sent protocol semantics, such as properties-of, and relations-
between, packet header fields. Fig. 2 shows an overview of
the fuzzing process where an expert manually specifies the
rules used to generate testing strategies. A manager script
takes the test cases and tested system as inputs and interacts
with a testing environment to instantiate the tested protocol,
inject the test cases, and receive reports about the execution.

Protocol Grammar Extraction A network protocol is de-
fined by the header attached to transported packets. This
header often has fixed size (in bits), where certain parts of
it, known as fields, have defined meaning and size. Protocol

semantics are defined by the properties of these fields. E.g.,
bytes 17-18 in the TCP header contain a checksum.

We formalize these concepts and define protocol gram-
mars over two components: a set of fields that correspond to
the header, with each field having a name, a size (i.e. # bits),
and an order in the packet header, as well as a set of optional
field properties. These definitions are given with respect to
a set of protocol-specific named fields (f ) and field-specific
named properties (〈f, p〉). Given these notations, we define
two NLP tasks for extracting protocol information. The first,
Type Extraction, given a protocol document, extract the set
of protocol field and property symbols. The second problem,
Symbol Identification and Linking, given the document
and the set of extracted symbols, identify mentions of these
symbols in text, and link together field mentions to their rel-
evant properties, as indicated by the protocol text.

Zero Shot Learning for Entity and Property Linking.
Given that the set of symbols is different for each proto-
col, approaching these problems using a traditional fully su-
pervised approach would require building a separate classi-
fier for each specific set of protocol symbols T →E, which
would defeat the goal of automating the process. Instead,
we take a zero-shot learning (ZSL) (Palatucci et al. 2009)
approach, which learns a mapping 〈T,E〉 → {t,f} from
a tuple containing the input and output to a Boolean value
indicating whether the pair is correct or not. The main ob-
servation behind zero-shot learning is that the set of output
symbols does not have to be fully specified during train-
ing, and unlike traditional supervised learning, the system
is expected to perform well even over outputs that were
not observed during training. This is done by learning a
similarity metric, sim(t, ei) and defining the prediction as:
argmaxei∈E sim(t, ei). We learn a similarity function be-
tween textual phrases and protocol fields and properties. The
similarity function captures the surface level string simi-
larity, acronyms used in the text to refer to the fields, and
anaphoric references (“it”,“that field”) based on their con-
text. This approach adapts to new protocols by providing
different sets of entities.

Design
We designed the NLP pipeline to solve the two problems
above with two goals: (1) minimize the manual supervi-
sion effort required for training and (2) adapt to new pro-
tocols without re-training the system. First, we include a
pre-processing step to read in the raw specification docu-
ments and normalize their structure. Then, the entity types
extraction task leverages the hierarchical structure of proto-
col specification documents, like RFCs. We use a rule-based
system leveraging RFC specific formatting for identifying
and extracting entity types. There are 25 types for each pro-
tocol on average, and the rule based system was able to re-
cover these types with 0.82 accuracy. We limit the discussion
due to space consideration.

We take a two-step approach for the symbol identification
task, first locating field (entity) mentions in the document,
and then, by examining their context, we look for proper-
ties associated with them. For both steps we use a ZSL ap-



Chunked	Text:
[The	urgent	pointer]	[points]	[to]
[the	sequence	number]	[of]	[the	
octet]	[following]	[the	urgent	data]	.	
[This	field]	[is]	[only]	[be	
interpreted]	[in]	[segments]	[with]		
[the	URG	control	bit	set]	.	

Entities:
Source	Port
Destination	Port
Sequence	Number
Acknowledgment	No
Data	Offset
Reserved,
Control	Bits
Window
Checksum
Urgent	Pointer
Options

Is	Entity	in	
Chunk?

Is	Entity	in	
Chunk?

Is	Entity	in	
Chunk?

Is	Entity	in	
Chunk?

Figure 3: Example of zero-shot learning classification for
entity mentions.

proach, where a classifier is trained to look for similarities
between document text and protocol symbols. We developed
new classifiers trained on network protocol data instead of
using off-the-shelf tools trained for non-technical domains,
which are a poor fit for our highly technical domain.

Finally, a post-processing step transforms the information
extracted into a protocol grammar description, which can be
used by downstream packet generation tasks.

Entity Mention Identification For this task, the needed
inputs are the pre-processed document and the list of en-
tity types. We used the entity types list we extracted auto-
matically from each document, but any ontology consist-
ing of relevant entity types could also be used. Since en-
tity types vary in both name and number between protocols,
we use a ZSL approach that learns a similarity metric be-
tween text snippets that takes into account character level
similarity, writing style (e.g., capitalization patterns, abbre-
viations), and relevant context words. This approach allows
our classifier to generalize to previously unseen entity types
that appear in new protocol documents.

Specifically, we define a binary classification problem
over all pairs (ej , ci) where ej represents each entity type
and ci represents a chunk in the document text, as shown
in Fig. 3. If the chunk ci contains a reference to entity type
ej , the pair is labeled as a positive example. The pair is la-
beled as a negative example otherwise. This way we learn a
similarity score between ej and ci that is able to generalize
to different entity types. We train an SVM classifier for this
problem using a set of lexical and syntactic features1.

Property Extraction At this stage we identify the proper-
ties of entities and extract them from the document body.
Based on an analysis of a wide variety of network pro-
tocols, we selected 9 properties to extract. The properties
we consider include checksum, which marks packet fields
containing checksums; port, which marks packet fields
used for multiplexing different communication channels;
and multiple, which indicates that a field’s value is a
multiple of some constant. Note that unlike entity types,
which vary between protocols, we look for the same prop-
erties in each protocol. However, we keep the same setup,
so we could support cases where properties are different.
We choose these properties because they are widely present
across network protocols and contain information that is
useful for generating test cases. For example, knowing that a
field represents a checksum means that we should not spend
time testing random values for it.

1https://gitlab.com/PurdueNLP/snake nlp

This classifier identifies chunks of text that express a
property; however, it does not determine which property nor
the identity of the arguments (i.e. the entity types involved
in the relation or property). Identifying the type of a relation
or property is done simply by choosing the relation or prop-
erty with the maximum key phrase overlap. To determine the
argument of the property, we use the entity mentions identi-
fied in the previous stage and a simple heuristic. We choose
the entity type defined in the title of the section in which
the property appears. Since many properties refer to the en-
tity type currently being discussed, this makes sense. Fig. 4
shows an example of the output of this classifier.

Post-processing We post-process the properties by lever-
aging domain specific knowledge. Since these properties are
being used to characterize the protocol, we only need a sin-
gle (property, entity) tuple, regardless of how many times
it appears in the document. This benefits us significantly as
we usually have multiple opportunities to extract each prop-
erty tuple. In addition, many properties can occur only on
a single field in the packet header (e.g. packet type,
header length), while others cannot occur in combi-
nation (e.g. packet type and sequence number are
mutually exclusive). Finally, if our pipeline was unable
to identify key properties like packet type, header
length, and checksum, we attempt to guess which fields
have these properties based on field names and sizes. Finally,
we associate our cleaned properties with the packet fields.

Evaluation
We do an intrinsic evaluation of our system, observing its
performance at extracting entities and properties for differ-
ent protocols. Then, we do an extrinsic evaluation, using the
extracted information as an input to a grammar-based fuzzer
for transport protocols.

Information Extraction Evaluation
Zero-Shot Learning Setup We formalize the ZSL setup
as follows. Given a set of N RFC documents, each describ-
ing a different network protocol, we learn scoring functions
for extracting entities and properties using N−1 documents,
and test on a different document with unobserved entity
types. Each document Di has a specific set of entity types
Ei. As mentioned in the design section, the set of properties
P = {p1, p2, ..., pm} is the same for every protocol.

We define a training set S = (D,E), where D is a set of
N − 1 documents and E is the set of entity types extracted
from those documents. Then, we learn a scoring function
s1(ej , ci) to determine the likelihood of a chunk ci ∈ Di of
being a mention of an entity ej ∈ Ei. In the case of prop-
erties, the amount of training data is very limited. For this
reason, we generalize the problem and learn a scoring func-
tion s2(ci, P ) to determine if a chunk ci ∈ Di is a mention
to any property in P . We solve the problem of identifying
the property type by selecting the type with maximum key
phrase overlap with the chunk.

At test time, the aim is to take a new document Dk, with
unobserved entity types Ek, and extract properties and enti-
ties from its specification. Once mentions are extracted, we



Property extraction:
Section Title: [(entity mention: Data Offset)Data Offset] : 8 bits
Section Text: [(entity mention: Data Offset)The offset] from the start of the packet ’s DCCP [(property keyword: header length) header]
to the start of its application data area , in 32-bit words .
Property: Header Length, Data Offset

Figure 4: Example of property extraction.

Table 1: Entity Mention Identification
Approach Prec Recall F1 TP FP
O ≥ 50% 0.19 0.58 0.29 502 2147
O ≥ 70% 0.40 0.48 0.43 418 617
O ≥ 85% 0.58 0.42 0.49 363 258
O ≥ 100% 0.74 0.36 0.49 316 111
RB1 0.93 0.18 0.30 157 12
RB2 0.77 0.48 0.59 411 122
Our Approach 0.78 0.66 0.72 576 159

match each property with the entity defined in the title of the
section in which the property appears.

Dataset We annotated a set of public RFC documents.
These documents are a common form for protocol specifi-
cation and are written in plain text following a specific for-
mat. We use RFC documents for six protocols: GRE, IPv6,
IP, TCP, DCCP and SCTP. We selected these RFCs because
they specify common transport and network layer protocols
that we can test with our fuzzer.

Results For entity mentions, we measure precision, recall,
and F1. Additionally, we report the number of true positives
(TP) and false positives (FP). In the case of properties, anno-
tations often span more than one chunk. We consider a prop-
erty to be found if we classify any chunk in the annotation
span as a property. For this reason, we report the true posi-
tive rate at the span level (S-TPR). Additionally, we measure
the rate of false chunks that our classifier miss-classifies as
properties (C-FPR). We do six iterations, training with five
protocols and testing on the sixth. Tables 1 and 2 show ag-
gregated results for these six iterations. We compare our ap-
proach with a set of rule based systems.

Table 1 shows results for extracting entity mentions. The
first four rows correspond to simple string matching sys-
tems. Here, we measure the overlap O between an entity
type and the current chunk. We classify the chunk as an en-
tity mention if the overlap is at or above a certain percentage
P . The trade-off in these systems is clear. The higher P , the
higher the precision and the lower the recall. As we reduce
P , recall increases and precision suffers. The following two
approaches are rule-based systems based on our feature set.
Here, we take the same set of features used by our classifier
and weigh them manually. In RB1, we weight each feature
by its frequency of occurrence in the dataset. For each fea-
ture f we calculate pr and nr. We then give each feature f a
weight of +pr if pr > nr, a weight of−nr if nr > pr, and a
weight of 0 if pr = nr. We use a weight of −nr for the bias
term. In RB2, we weight each feature with +1 if it occurs
more often in positive examples and −1 if it occurs more
often in negative examples. We use a weight of −1 for the
bias term. While RB2 performs better than string matching,
our classifier still outperforms all baselines. In other words,

Table 2: Property Extraction
Approach S-TPR C-FPR
O ≥ 50% 0.86 0.36
O ≥ 70% 0.77 0.12
O ≥ 85% 0.77 0.11
O ≥ 100% 0.77 0.11
RB1 0.90 0.89
RB2 0.95 0.87
Our Approach 0.86 0.28

Table 3: Entity Mention Identification per Protocol
Protocol Prec Recall F1 # Inst
TCP 0.96 0.68 0.80 38
SCTP 0.70 0.60 0.64 484
IPv 0.93 0.80 0.86 127
IP 0.87 0.60 0.71 45
GRE 1.0 0.81 0.89 21
DCCP 0.85 0.73 0.79 160
Total (K) 0.78 0.66 0.72 875
Total (E) 0.73 0.53 0.62 875

there is value in both informative features and the use of our
learning framework.

For properties, results can be observed in Table 2. Simi-
larly to the entity mention case, in the first four approaches,
we measure the overlap between property key phrases and
the current chunk. We classify a chunk as a property if the
overlap is at or above a certain percentage P . These meth-
ods have a high success rate (S-TPR) while introducing less
noise (C-FPR). However, the C-FPR is too high for O ≥ 50
and the S-TPR is too low for O ≥ 70. Identifying most prop-
erties is essential for the performance of the fuzzer, while
we can live with some level of noise and rely on the post-
processing step. We find that our approach gives us a bet-
ter balance between the number of properties found and the
level of noise introduced. RB1 and RB2 are the same rule-
based methods that we considered for entity mention identi-
fication. In this case, the level of noise introduced with these
systems is too high.

On table 3 we can see the results for extracting entity men-
tions by protocol. We show that our ZSL approach general-
izes well to different, unobserved protocols. We report ag-
gregated results both assuming that the list of entity types is
known a priori (K), and when the list of entity types is ex-
tracted using the RFC format (E). Even though performance
suffers, we only need to identify a single (property, entity)
tuple, regardless of how many times it appears in the doc-
ument, to leverage this information in the fuzzer. For this
reason, the error propagation when using a fully automated
pipeline is minimized. Due to space considerations, we only
show results by protocol for entity mentions.



Table 4: Coverage Evaluation
TCP DCCP

Unique Pkt
Type Traces

Total
Strategies

Unique Pkt
Type Traces

Total
Strategies

Random 13 1000 18 1000
Manual 784 901 718 871
NLP-based 713 819 816 1022

Table 5: Attack Discovery Results
TCP DCCP

Reported
Attacks

Interesting
(Off-path)
Attacks

Unique
Attacks

Reported
Attacks

Interesting
(Off-path)
Attacks

Unique
Attacks

Random 996 0 0 992 0 0
Manual 219 63 5 209 44 2
NLP-based 220 69 5 254 47 2

Fuzzer Evaluation
SNAKE Fuzzer We demonstrate the usefulness and ef-
fectiveness of our automated protocol grammar extraction
framework by applying it to SNAKE (Jero, Lee, and Nita-
Rotaru 2015), a state-of-the-art transport protocol fuzzer.
The key component of SNAKE is a malicious proxy that
modifies and injects attack packets based on a protocol de-
scription manually specified by an expert.

Fuzzer configurations We use SNAKE to test two proto-
cols, TCP and DCCP, in a single operating system, Linux
3.0.0 in Ubuntu 11.10. We compare three different testing
configurations: Random, Manual, and NLP-based.

Random. This configuration uses a fuzzer configured
with no information about the protocol grammar. It gener-
ates tests that randomly replace a random number of the first
20 bytes of packets with random data. We only modify the
first 20 bytes to approximate the length of a typical trans-
port protocol header. Note that in any given test, the same
bytes in all packets are modified. Attack injection is on every
packet sent. We generate 1,000 test strategies in this manner
to compare with our other testing configurations.

Manual. This configuration uses the SNAKE fuzzer with
a manually created protocol grammar. For each packet type,
test strategies are created to inject new messages, modify all
packet fields, and apply all delivery actions to those pack-
ets. For modifying packet fields, tests modify fields based
on their size. Attack injection is on every sent packet.

NLP-based. This configuration uses SNAKE configured
with our automatically extracted protocol grammar, derived
from extracted entities and properties. This configuration
generates a similar set of tests that injects new packets, mod-
ifies the delivery of packets, or overwrites a single field in
packets during each test. During each test, all packets of a
particular type are modified, and attack injection is on every
packet. For each packet type, test strategies are created to in-
ject new messages, modify all packet fields, and apply all de-
livery actions to those packets. This configuration has more
information about packet fields available to it, thanks to our
pipeline. We leverage this information to apply better field
modifications. For example, from the definition of check-

sums and protocol ports, we expect that tampering with them
will result in modified packets simply being thrown away.
Thus, we can apply a single modification to fields that are
identified as checksums or ports.

Metrics To evaluate the different configurations we focus
on a number of indicators: (1) the amount of effort required
to test an implementation; (2) the coverage of the generated
tests; and (3) the overall attack discovery results.

We use the number of test strategies generated to mea-
sure the amount of effort required to test an implementa-
tion. We measure coverage as the number of unique packet
type traces observed. A packet type trace records the order
in which different types of packets are observed in a flow.
Thus, a packet type trace succinctly summarizes a protocol
connection and approximates the path traversed through the
code. To effectively test a protocol, as many unique connec-
tions, or code paths, as possible should be explored. Ideally,
we want to expend a small amount of effort while achieving
high coverage. These indicators are reported in Table 4.

The number of attacks identified indicates how many test
strategies were reported by the testing configuration as at-
tacks. Unfortunately, many of these attacks are on-path at-
tacks which are not interesting (i.e., relevant) since TCP and
DCCP do not attempt to protect against these attacks. Re-
moving these on-path attacks leaves us with the interesting
off-path attacks, which we refer to as interesting attacks.
Note that many strategies may exercise the same underlying
root vulnerability, so we perform a manual analysis of all
reported attack strategies to identify the number of unique
attacks actually identified. Attacks are reported in table 5.

Random Testing vs Grammar-based Fuzzing Table 4
compares coverage, in terms of unique packet type traces,
achieved by all three configurations. We observe that the
manual and NLP-based configurations achieve similar cov-
erage, around 700 unique traces for either protocol, while
random achieves only 13 traces for TCP and 18 for DCCP.
To achieve this coverage, all three configurations required
about 1,000 strategies. Since number of strategies is directly
equivalent to the amount of effort required for testing, we



can say that random testing is significantly less efficient than
grammar-based fuzzing.

This occurs primarily because in the random test configu-
ration all packet manipulation strategies stall the connection,
since modifying the packet corrupts the protocol checksum,
resulting in the packet being thrown away at the receiver. In
order to correct this, the fuzzer would need to know the exact
location of the checksum in the packet, which is exactly the
information provided by a protocol grammar. Similarly, all
packet delivery strategies in the random test configuration
stall the connection because they drop or delay key packets
like the TCP SYN and the DCCP Request. In order to work
around this, the fuzzer would need to know the type of each
packet, which is also supplied by a protocol grammar. All of
these connection stalls generate similar traces and traverse
similar code paths, resulting in very poor coverage.

In addition to poor coverage, Table 5 indicates that
the random test configuration also generates a significant
amount of reported attacks, but none of them are interest-
ing. This is because each of the connection stalls mentioned
above is reported as an attack on availability. Unfortunately,
these are on-path attacks, not relevant for TCP or DCCP.

NLP-based vs Manual Configurations We first consider
testing coverage, shown in Table 4, and confirm that, thanks
to the additional properties provided by our document pro-
cessing pipeline, the NLP-based configuration generates
fewer strategies than the manual configuration for TCP. This
results in a reduction in the amount of time and effort re-
quired for testing. This does result in slightly lower cover-
age, but only by about 70 traces.

Unfortunately, for DCCP our pipeline over-approximates
the number of fields in each packet, due to differences be-
tween packet types. This leads to generating more strategies
(1022 instead of 871) and an overall increase in the time and
computational effort required for testing. Note that it also
results in improved coverage by almost 100 traces.

In terms of the attacks that are reported by our testing con-
figurations, shown in Table 5, we find that our NLP-based
testing system reports a few more attacks (1 more for TCP
and 45 more for DCCP) and that more of those reported at-
tacks are interesting.

Conclusion
In this work, we proposed a methodology to extract informa-
tion from technical documents designed around the issues
of domain adaptation and minimal supervision, which are
repeating issues when using NLP in technical domains. We
build a framework to extract grammars from specification
documents automatically and combine it with a grammar-
based fuzzer to create a completely automated testing sys-
tem. Our document processing pipeline extracts protocol en-
tity types and mentions—or packet fields— and properties
from RFCs using a zero-shot learning approach. We demon-
strate the value of our approach by applying it to a transport
protocol fuzzer and comparing it to using a manual grammar
on two protocols, TCP and DCCP. We find a reduction in the
testing effort for TCP, while identifying the same set of at-
tacks and doing so in a fully automated manner for both.

References
Abdelnur, H. J.; State, R.; and Festor, O. 2007. KiF: A
stateful SIP fuzzer. In ACM IPTComm.
Banks, G.; Cova, M.; Felmetsger, V.; Almeroth, K.; Kem-
mer, R.; and Vigna, G. 2006. SNOOZE: Toward a Stateful
NetwOrk prOtocol fuzZEr. In ISC.
Cho, C. Y.; Shin, E. C. R.; Song, D.; et al. 2010. Infer-
ence and analysis of formal models of botnet command and
control protocols. In ACM CCS.
Cho, C. Y.; Babic, D.; Poosankam, P.; Chen, K. Z.; Wu,
E. X.; and Song, D. 2011. MACE: Model-inference-assisted
concolic exploration for protocol and vulnerability discov-
ery. In USENIX Security.
Comparetti, P. M.; Wondracek, G.; Kruegel, C.; and Kirda,
E. 2009. Prospex: Protocol specification extraction. In IEEE
SP.
Corbett, J. C.; Dwyer, M. B.; Hatcliff, J.; Laubach, S.;
Păsăreanu, C. S.; Bby, R.; and Zheng, H. 2000. Bandera:
Extracting finite-state models from java source code. In
ACM/IEEE ICSE.
Jero, S.; Bu, X.; Nita-Rotaru, C.; Okhravi, H.; Skowyra, R.;
and Fahmy, S. 2017. BEADS: automated attack discovery
in OpenFlow-based SDN systems. In RAID.
Jero, S.; Lee, H.; and Nita-Rotaru, C. 2015. Leveraging
state information for automated attack discovery in transport
protocol implementations. In IEEE/IFIP DSN.
Kothari, N.; Millstein, T.; and Govindan, R. 2008. Deriving
state machines from tinyos programs using symbolic execu-
tion. In IPSN.
Lie, D.; Chou, A.; Engler, D.; and Dill, D. L. 2001. A simple
method for extracting models from protocol code. In IEEE
ISCA.
Lin, Z.; Jiang, X.; Xu, D.; and Zhang, X. 2008. Automatic
protocol format reverse engineering through context-aware
monitored execution. In NDSS.
Palatucci, M.; Pomerleau, D.; Hinton, G. E.; and Mitchell,
T. M. 2009. Zero-shot learning with semantic output codes.
In NIPS.
Pandita, R.; Xiao, X.; Yang, W.; Enck, W.; and Xie, T. 2013.
Whyper: Towards automating risk assessment of mobile ap-
plications. In USENIX Security.
Wang, Y.; Zhang, Z.; Yao, D. D.; Qu, B.; and Guo, L.
2011. Inferring protocol state machine from network traces:
a probabilistic approach. In ACNS.
Wang, J.; Guo, T.; Zhang, P.; and Xiao, Q. 2013. A model-
based behavioral fuzzing approach for network service. In
IMCCC.
Witte, R.; Li, Q.; Zhang, Y.; and Rilling, J. 2008. Text Min-
ing and Software Engineering: an Integrated Source Code
and Document Analysis Approach. IET Software.
Wong, E.; Zhang, L.; Wang, S.; Liu, T.; and Tan, L. 2015.
DASE: document-assisted symbolic execution for improv-
ing automated software testing. In ACM/IEEE ICSE.


