
Secure Communication Channel Establishment:
TLS 1.3 (over TCP Fast Open) vs. QUIC

Shan Chen1, Samuel Jero2, Matthew Jagielski3,
Alexandra Boldyreva1, and Cristina Nita-Rotaru3

1 Georgia Institute of Technology {shanchen,sasha}@gatech.edu
2 Purdue University sjero@sjero.net

3 Northeastern University jagielski.m@husky.neu.edu, c.nitarotaru@neu.edu

Abstract. Secure channel establishment protocols such as TLS are some
of the most important cryptographic protocols, enabling the encryption
of Internet traffic. Reducing the latency (the number of interactions be-
tween parties) in such protocols has become an important design goal
to improve user experience. The most important protocols addressing
this goal are TLS 1.3 over TCP Fast Open (TFO), Google’s QUIC over
UDP, and QUIC[TLS] (a new design for QUIC that uses TLS 1.3 key
exchange) over UDP. There have been a number of formal security anal-
yses for TLS 1.3 and QUIC, but their security, when layered with their
underlying transport protocols, cannot be easily compared. Our work is
the first to thoroughly compare the security and availability properties
of these protocols. Towards this goal, we develop novel security mod-
els that permit “layered” security analysis. In addition to the standard
goals of server authentication and data privacy and integrity, we consider
the goals of IP spoofing prevention, key exchange packet integrity, secure
channel header integrity, and reset authentication, which capture a range
of practical threats not usually taken into account by existing security
models that focus mainly on the crypto cores of the protocols. Equipped
with our new models we provide a detailed comparison of the above three
protocols. We hope that our results will help protocol designers in their
future protocol analyses and practitioners to better understand the ad-
vantages and limitations of novel secure channel establishment protocols.

Keywords: applied cryptography · provable security · TLS · QUIC ·
secure channel · availability · network protocols

1 Introduction

Motivation. Nowadays, more than half of all Internet traffic is encrypted ac-
cording to a 2017 EFF report [20], with Google reporting that 93% of its traffic
is encrypted as of January 2019 [1]. This widespread Internet traffic encryption
is enabled by protocols that allow two parties (where one or both parties have
a public key certificate) to establish a secure communication channel over the
insecure Internet. Typically, the parties first authenticate all parties holding a
public key certificate and agree on a session key — the key exchange phase.

2 Chen et al.

Then, this session key is used to encrypt the communication during the session
— the secure channel phase. We will refer to such protocols as secure channel
establishment protocols.

The main secure channel establishment protocol in use today is TLS. The
session key establishment with TLS today involves 3 round-trip times (RTTs) of
end-to-end communication, including the cost of establishing a TCP connection
before the TLS connection. Further, this TCP cost is paid every time the two
parties communicate with each other, even if the connection is interrupted and
then immediately resumed. Given that most encrypted traffic is web traffic, this
cost represents a significant performance bottleneck, a nuisance to users, and
financial loss to companies. For instance, back in 2006 Amazon found that every
100ms of latency cost them 1% in sales [34], while a typical RTT on a connection
from New York to London is 70ms [22].

Not surprisingly, many efforts in recent years have focused on reducing la-
tency in secure channel establishment protocols. The focus has been on reducing
the number of interactions (or RTTs) during session establishment and resump-
tion without sacrificing much security. The most important protocols addressing
this goal are TLS 1.3 [43] (the just-released successor to the current TLS 1.2
standard) and Google’s QUIC [45].

With TLS 1.3, it is possible to reduce the number of RTTs (prior to send-
ing encrypted data) during session resumption to 1, by utilizing a session ticket
that was saved during a previous communication. The remaining 1-RTT dur-
ing session resumption is due to the aforementioned TCP connection. However,
one recent optimization for TCP, called TCP Fast Open (TFO) [42,10] extends
TCP to allow for 0-RTT resumption connections, so that the client may begin
data transmission immediately. The mechanism underlying this optimization is
a cookie saved from previous communication, similar to the ticket used by TLS
1.3.

Like TLS 1.3, Google’s QUIC uses weaker initial keys, under which data
can be encrypted earlier, and a token saved from previous communication be-
tween the parties. But unlike TLS, QUIC operates over UDP rather than TCP.
Instead of relying on TCP for reliability, flow control, and congestion control,
QUIC implements its own data transmission functionality, integrating connec-
tion establishment with key exchange. These features allow QUIC to have 1-RTT
full connections and 0-RTT resumption connections.

In addition to TLS 1.3 over TFO and QUIC over UDP, there is a new design
for QUIC [23] (which we refer to as QUIC[TLS] [47] to indicate that it borrows
the key exchange from TLS 1.3) over UDP. These 3 protocols win in terms of
the number of interactions, but how does their security compare?

At first glance, the question is easy to answer. Recent works have done for-
mal security analyses of TLS 1.3 [28,5,14,11,29,15,33,18,13,4,12,6] and Google’s
QUIC [17,35]. Most works confirm that (the cryptographic cores of) both proto-
cols are provably secure under reasonable computational assumptions. Moreover,
as shown in [35,18], their 0-RTT data transmission designs cannot achieve the
same strong security guaranteed by classical key exchange protocols with at least

TLS 1.3 (over TCP Fast Open) vs. QUIC 3

one RTT. In particular, the 0-RTT keys do not provide forward secrecy and the
0-RTT data suffers from replay attacks. Overall, it might seem that all three
layered protocols mentioned above are equally secure.

However, a closer look reveals that the answer is not that simple. First,
all aforementioned formal security analyses, except for [35] analyzing the IP
spoofing (source validation) of QUIC, did not consider packet-level availability
attacks. Therefore, it is not clear at the packet level what security can be achieved
and what attacks can be prevented by these protocols. In other words, we have no
formal understanding of what security can be obtained when layering protocols.
We note that for protocols targeting low latency availability is essential, and
since it can be assured to some degree by cryptographic means, a cryptographic
analysis is very important. Also, TFO uses some cryptographic primitives, such
as a cookie, to prevent IP spoofing, but, to the best of our knowledge, no formal
analysis has been done. Furthermore, the security of QUIC[TLS] has not been
formally analyzed (although some security aspects can be reduced to those of
Google’s QUIC and TLS 1.3).

Our contributions. The goal of our work is to help public understanding of
how security compares for the most latency-efficient secure channel establishment
protocols on the market today. By including packet-level attacks in our analysis,
our results also shed light on how the reliability, flow control, and congestion
control of both approaches compare, in adversarial settings.

To compare security, we first need to define a general protocol syntax for
secure channel establishment and fix a security model for it. We take Quick
Connections (QC) protocol definition [35] as our starting point. To accommo-
date protocol syntaxes of TLS 1.3 and QUIC[TLS], we extend the QC protocol
to a more general Multi-Stage Authenticated and Confidential Channel Establish-
ment (msACCE) protocol, which allows more keys to be set during each session.
The details are in Section 4.1.

Then, we extend the Quick Authenticated and Confidential Channel Estab-
lishment (QACCE) security model [35] to two msACCE security models —
msACCE-std and msACCE-pauth — that are general enough for all layered
secure channel establishment protocols mentioned above. The former model,
msACCE-std, is fairly standard and is for core cryptographic security. The lat-
ter model, msACCE-pauth, is novel and is for packet-level security. For this
packet-authentication model we extend the definition of IP-Spoofing Prevention
from [35], and also define Key Exchange (KE) Header Integrity, KE Payload
Integrity, Secure Channel (SC) Header Integrity, and Reset Authentication.

Equipped with our new models (see [9] and Section 4.2 for details), we
study the security and availability functionalities provided by TFO+TLS 1.3,
UDP+QUIC, and UDP+QUIC[TLS]. We first confirm that all protocols prov-
ably satisfy the standard security notions of Server Authentication and Channel
Security given that their building blocks are secure. The results mostly follow
from prior works and we just have to argue that they still hold for our msACCE-
std security model (which is an extension to previous models). Due to lack of
space, we treat the above standard security notions and corresponding proto-

4 Chen et al.

col security analyses in the full version [9], and here we focus on the novel
packet-level security. We analyze the first 2 low latency protocols under our new
model in Section 5 and refer to the full version [9] for the security analysis of
UDP+QUIC[TLS]. Some of our theoretical findings capture practical availability
attacks that the networking community has been slowly uncovering via manual
investigation over the last 30 years [46,27,2,8,31,30,25,41,7,21,40,36,48,26], such
as TCP flow control manipulation, TCP acknowledgment injection, etc. Our
findings also discover new weaknesses (e.g., those that allow manipulating the
early key exchange packets without being detected by the communicating par-
ties). Furthermore, our results prove security guarantees for certain goals (such
as showing that TFO’s cookie mechanism provably achieves the security goal
of IP Spoofing Prevention and QUIC[TLS]’s stateless reset mechanism prov-
ably achieves the security goal of Reset Authentication). Table 1 in Section 5
summarizes our results.

2 Background

Network protocols are designed following a layered network stack model where
each layer has its own functionality, defines an interface for use by higher layers,
and relies only on the properties of lower layers. In this work, we are concerned
with three layers: network, represented by the IP protocol; transport, represented
by UDP and TCP with the Fast Open optimization (TFO); and application,
represented by TLS or QUIC.

TCP Fast Open. TCP Fast Open (TFO) is an optimization which introduces
a simple modification to the TCP connection establishment handshake to re-
duce the 1-RTT connection establishment latency of TCP and allow for 0-RTT
handshakes. The mechanism through which 0-RTT is achieved is a cookie that
is obtained by the client first time it communicates with a server and cached for
later uses. This cookie is intended to prevent replay attacks while avoiding the
need for servers to keep expensive state. It is generated by the server, authenti-
cates client IP address, and has a limited lifetime. Generation and verification
have low overhead. Cookies are sent in the TFO option field in SYN packets (see
Fig. 1 for details).

TLS 1.3. The recently standardized TLS 1.3 [43] improves TLS 1.2. Most rel-
evant, it enables 0-RTT handshakes at the TLS level. In a TLS 1.3 full connec-
tion (see Fig. 1, fourth message), the client begins by sending a ClientHello

message containing a list of ciphersuites to use with key shares for each. The
server responds with a ServerHello message containing the ciphersuite to use
and its key share. At this point, an initial encryption key is derived and all
future messages are encrypted. The server also sends an EncryptedExtensions

message containing any extension data, a CertificateRequest message if doing
client authentication, a ServerCertificate message containing the server’s cer-
tificate, a ServerCertificateVerify message containing a signature over the
handshake with the private key corresponding to the server’s certificate, and a
ServerFinished message containing an HMAC of all messages in the handshake.

TLS 1.3 (over TCP Fast Open) vs. QUIC 5

(a)

Client Server

SYN,Cookie=nil

SYN-ACK,Cookie=ck

ACK
ClientHello

ServerHello

{EncryptedExtensions}

{CertificateRequest*}

{ServerCertificate*}

{ServerCertificateVerify*}

{ServerFinished}

{ClientCertificate*}{ClientCertificateVerify*}{ClientFinished}

[NewSessionTicket=tk]

[Application Data]

TFO
start TFO

generate
cookie

TLS
start

TLS
generate
ticket

(b)

Client Server

SYN,Cookie=ck
ClientHello,PSK=tk
(Application Data*)

SYN-ACK

ServerHello

{EncryptedExtensions}

{ServerFinished}

ACK
(EndOfEarlyData)
{ClientFinished}

[Application Data]

TFO
start

TLS
start

TFO
check
cookie

TLS
check
ticket

Fig. 1. TFO+TLS 1.3 (EC) DHE 2-RTT full handshake (a) and TFO+TLS 1.3 PSK-
(EC) DHE 0-RTT resumption handshake(b). * indicates optional messages. () indicates
messages protected using the 0-RTT keys derived from a pre-shared key. {} and []
indicate messages protected with initial and final keys.

The client receives these messages, verifies their contents, and responds with
ClientCertificate and ClientCertificateVerify messages if doing client
authentication before finishing with a ClientFinished message containing an
HMAC of all messages in the handshake. At this point, a final encryption key is
derived and used for encrypting all future messages. If the server supports 0-RTT
connections, one final handshake message, the NewSessionTicket message, will
be sent by the server to provide the client with an opaque session ticket to be
used in a resumption session.

In later TLS 1.3 resumption connections to this server, the client uses the
session ticket established in the prior full connection to do a 0-RTT connection.
In this case, the client sends a ClientHello message indicating a pre-shared-key
ciphersuite, a ciphersuite to use for the final key, and the cached session ticket.
The client can then derive an encryption key and begin sending 0-RTT data.
The server will verify the session ticket, use it to establish the same encryption
key, and send a ServerHello message containing the ciphersuite to use and its
final key share. At this point, an initial encryption key is derived and all future
messages are encrypted. The server also sends an EncryptedExtensions message
containing any extension data and a ServerFinished message containing an
HMAC of all messages in the handshake. The client receives these messages,
verifies their contents, and responds with an EndOfEarlyData message and a
ClientFinished message containing an HMAC of all messages in the handshake.

6 Chen et al.

(a)

Client Server

InchoateClientHello

ServerReject, STK=stk

ClientHello, STK=stk{Application Data*}

{ServerHello}

[Application Data]

QUIC
start

QUIC
generate
token

QUIC
check
token

(b)

Client Server
ClientHello, STK=stk{Application Data*}

{ServerHello}

[Application Data]

QUIC
start QUIC

check
token

Fig. 2. QUIC 1-RTT full handshake (a) and UDP+QUIC 0-RTT resumption hand-
shake (b). * indicates optional messages. {} and [] indicate messages protected with
initial and final keys.

At this point, a final encryption key is derived and used for encrypting all future
messages.

TLS 1.3 over TFO. Layering TLS 1.3 over TCP Fast Open enables true 0-RTT
connections. In a full connection to a TFO+TLS 1.3 server, the client requests
a TFO cookie in the TCP SYN and then does a full TLS 1.3 handshake once
the TCP connection completes. This takes 3-RTTs (see Fig. 1), but provides a
cached TFO cookie and cached TLS session ticket. In subsequent resumption
connections to this server, the client can use the TFO cookie to establish a 0-
RTT TCP connection and include the TLS 1.3 ClientHello message in the
SYN packet. The TLS ClientHello message can use the cached TLS session
ticket to perform a 0-RTT resumption handshake. Thus, the TCP and TLS 1.3
connections are established at the same time, as shown in Fig. 1.

QUIC over UDP. Quick UDP Internet Connections (QUIC) is a transport
protocol developed by Google and implemented by Chrome and Google servers
since 2013 [45]. QUIC provides a very similar set of services to TFO+TLS 1.3,
however instead of modifying TCP to enable 0-RTT connection establishment,
QUIC replaces TCP entirely, using UDP.

QUIC packets contain a public header and a set of frames that are encrypted
and authenticated after initial connection setup. The header contains a set of
public flags, a unique 64bit connection identifier referred to as cid, and a variable
length packet number. All other protocol information is carried in control and
stream (data) frames that are encrypted and authenticated.

To provide 0-RTT, QUIC caches information about the server that will enable
the client to determine the encryption key to be used for each new connection. As
shown in Fig. 2, the first time a client contacts a given server it sends an empty
(Inchoate) ClientHello message. The server responds with a ServerReject

message containing the server’s certificate, an object called an scfg, (contains
a variety of information about the server, including a Diffie-Hellman share from
the server), supported encryption and signing algorithms, and flow control pa-
rameters. Along with the scfg, the server sends the client a source-address token

TLS 1.3 (over TCP Fast Open) vs. QUIC 7

or stk. The stk is used to prevent IP spoofing. It contains an encrypted version
of the client’s IP address and a timestamp.

With this cached information, a client can establish an encrypted connection
with the server. It first ensures that the scfg is correctly signed by the server’s
certificate which is valid and then sends a ClientHello indicating the scfg its
using, the stk value it has cached, a Diffie-Hellman share for the client, and
a client nonce. After sending the ClientHello, the client can create an initial
encryption key and send additional encrypted Application Data packets. In
fact, to take advantage of the 0-RTT connection establishment it must do so.
When the server receives the ClientHello message, it validates the stk and
client nonce parameters and creates the same encryption key using the server
share from the scfg and the client’s share from the ClientHello message.

At this point, while both client and server have established the connection,
setup encryption keys and all further communication between the parties is en-
crypted, the connection is not forward secure yet, meaning that compromising
the server would compromise all previous communication because the server’s
Diffie-Hellman share is the same for all connections using the same scfg. To
provide forward secrecy for all data after the first RTT, the server sends a
ServerHello message after receiving the client’s ClientHello which contains
a newly generated Diffie-Hellman share. Once the client receives this message,
client and server derive and begin using the new forward secure encryption key.

For the client that has connected to a server before, it can instead initi-
ate a resumption connection. This consists of only the last two steps of a full
connection, sending the ClientHello and ServerHello messages as shown in
Fig. 2.

QUIC with TLS 1.3 Key Exchange over UDP. A new version of QUIC [23],
which also supports 0-RTT, describes several improvements of the previous de-
sign. The most important change is replacing QUIC’s key exchange with the
one from TLS 1.3, as specified in the latest Internet draft [47]. We provide more
details (e.g., about its new stateless reset feature) in the full version [9].

3 Preliminaries

Public Key Infrastructure. For simplicity, we assume the public keys used
in our analysis are supported by a public key infrastructure (PKI) and do not
consider certificates or certificate checks explicitly. In other words, we assume
each public key is certified and bound to the corresponding party’s identity.

PRF and AEAD. In the full version [9] we recall the security definitions of a
pseudorandom function (PRF) F and a stateful authenticated encryption with
associated data (AEAD) scheme sAEAD. Accordingly, there we provide the def-

initions for the corresponding advantages: Advprf
F (A),Advaead

sAEAD(A). We also
refer to [44] for the syntax and security definitions of a nonce-based AEAD
scheme.

8 Chen et al.

4 msACCE Protocol and its Security

In this section, we define the syntax and two security models for Multi-Stage
Authenticated and Confidential Channel Establishment (msACCE) protocols.

4.1 Protocol Syntax

Our msACCE protocol is an extension to the Quick Connection (QC) protocol
proposed by Lychev et al. [35] and the Multi-Stage Key Exchange (MSKE) proto-
col proposed by Fischlin and Günther [17] (and further developed by [14,15,33,18]).
Even though the authors of [35] claimed their QC protocol syntax to be general,
TLS 1.3 does not fit it well because TLS 1.3 has two initial keys and one final
key in 0-RTT resumption while QC captures only one initial key. On the other
hand, the MSKE protocol and its extensions focus only on the key exchange
phases.

Our msACCE protocol syntax inherits many parts of the QC protocol syntax
but extends it to a multi-stage structure and additionally covers session resump-
tions (explicitly, unlike QC), session resets, and header-only packets exchanged
in secure channel phases. The detailed protocol syntax is defined below.

A msACCE protocol is an interactive protocol between a client and a server.
They establish keys in one or more stages and exchange messages encrypted
and decrypted with these keys. Messages are exchanged via packets. A packet
consists of source and destination IP addresses4 IPs, IPd ∈ {0, 1}32 ∪ {0, 1}64, a
header, and a payload. Each party P has a unique IP address IPP .

The protocol is associated with the security parameter λ ∈ N+, a key gen-
eration algorithm Kg that takes as input 1λ and outputs a public and secret
key pair, a header space5 (for transport and application layers) H ⊆ {0, 1}∗, a
payload space PD ⊆ {0, 1}∗, header and payload spaces Hrst ⊆ H,PDrst ⊆ PD
for reset packets (described later), a resumption state space RS ⊆ {0, 1}∗, a
stateful AEAD scheme6 sAEAD = (sG, sE, sD) (with a key space K = {0, 1}λ,
a message space M ⊆ {0, 1}∗, an associated data space AD ⊆ {0, 1}∗, and a
state space ST ⊆ {0, 1}∗), disjoint7 message spaces MKE,MSC,MpRST ⊆ M
with MKE,MSC for messages encrypted during key exchange and secure chan-
nel phases respectively and MpRST for pre-reset messages (described later) en-
crypted in a secure channel phase, a server configuration generation function
scfg gen described below.

4 For the network-layer protocols, we only consider the Internet Protocol and its IP
address header fields because our model mainly focuses on the application and trans-
port layers and additionally only captures the IP-spoofing attack.

5 Some protocol header fields (e.g., port numbers, checksums, etc.) can be excluded if
they are not the focus of the security analysis.

6 To fit TLS 1.3’s encryption scheme, unlike QACCE we model QUIC’s encryption
scheme as a more general stateful AEAD scheme rather than a nonce-based one.

7 Disjointness is a reasonable assumption as practical protocols (such as the 3 lay-
ered protocols that we consider) enforce different leading bits for different types of
messages.

TLS 1.3 (over TCP Fast Open) vs. QUIC 9

The protocol’s execution is associated with the universal notion of time di-
vided into discrete periods τ1, τ2, During its execution, both parties can keep
states that are initialized to the empty string ε. In the beginning of each time
period, the protocol may periodically update each server’s configuration state
scfg with scfg gen (which takes as input 1λ, a server secret key, and a time
period, then outputs a server configuration state). Otherwise, scfg gen is unde-
fined and without loss of generality the protocol is executed within a single time
period.

A reset packet enables a sender, who lost its session state due to some error
condition (e.g., server reboots, denial-of-service attacks, etc.), to abruptly ter-
minate a session with the receiver. A pre-reset message (e.g., a reset token in
QUIC[TLS]) is sent to the receiver in a secure channel phase8 before the sender
loses its state in order to authenticate the sender’s reset packet. Each session
has at most one pre-reset message for each party. A non-reset packet is not a
reset packet. A header-only packet has no payload.

We say a party rejects a packet if its processing the packet leads to an error
(defined according to the protocol), and accepts it otherwise.

The protocol has two modes, full and resumption. Its corresponding execu-
tions are referred to as the full and resumption sessions. Each resumption session
is associated with a single previous full session and we say the resumption ses-
sion resumes its associated full session. In the beginning of a full or resumption
session, each party takes as input a list of messages9Msnd = (M1, . . . ,Ml),Mi ∈
MSC, l ∈ N (where the total message length |Msnd| is polynomial in λ andMsnd

can be empty) as well as the other party’s IP address. In a full session, the server
runs Kg(1λ) to generate a public and secret key pair and sends its public key
to the client as input. In a resumption session, each party additionally takes as
input its own resumption state rs ∈ RS (set in the associated full session). In
either case, the client sends the first packet to start the session.

A D-stage msACCE protocol consists of D ∈ N+ successive stages and each
stage, e.g., the d-th (d ∈ [D]) stage, consists of one or two phases described as
follows:

1) Key Exchange. At the end of this phase each party sets its d-th stage
key kd = (kdc , k

d
s). At most one of kdc and kds can be ⊥, i.e., unused.10 If this

is the final stage in a full session, each party can send additional messages11 in
MKE encrypted with kd and by the end of this phase each party sets its own
resumption state.

8 A pre-reset message can also be carried within an encrypted key exchange packet.
We consider it encrypted as a separate secure channel packet to get a clean packet-
authentication security model described later.

9 For simplicity, we consider transportation of atomic messages rather than a data
stream that can be modeled as a stream-based channel [19] and later extended to
capture multiplexing [37].

10 This captures the case where a 0-RTT key only consists of a client encryption key
while the server encryption key does not exist.

11 This captures the post-handshake key exchange messages that are used for session
resumption, post-handshake authentication, key update, etc.

10 Chen et al.

2) Secure Channel. This phase is mandatory for the final stage but optional
for other stages. In this phase, the parties can exchange messages from their
input lists as well as pre-reset messages, encrypted and decrypted using the
associated stateful AEAD scheme with kd. The client uses kdc to encrypt and
the server uses it to decrypt, whereas the server uses kds to encrypt and the
client uses it to decrypt. They may also send reset or header-only packets. At
the end of this phase, each party outputs a list of received messages (which may
be empty) Mrcv

i = (M ′1, . . . ,M
′
l′i

), l′i ∈ N, M ′i ∈MSC.

Each message exchanged between the parties must belong to some unique
phase at some unique stage. One stage’s second phase and the next stage’s first
phase may overlap, and the two phases in the final stage may also overlap. We
call the final stage key the session key and the other stage keys the interim keys.

Correctness. Consider a client and a server running a D-stage msACCE proto-
col in either mode without sending any reset packet. Each party’s input message
list Msnd, in which the messages are sent among D stages according to any
partitioning Msnd =Msnd

1 , . . . ,Msnd
D , is equal to the other party’s total output

message list Mrcv = Mrcv
1 , . . . ,Mrcv

D , in which the message order is preserved.
Each party terminates its session upon receiving the other party’s reset packet.

Remark. With our more general protocol syntax, the ACCE [24] and QC [35]
protocols can be classified into 1-stage and 2-stage msACCE protocols respec-
tively.

4.2 Security Models

We propose two security models respectively for basic authenticated and con-
fidential channel security and packet authentication. Our models do not con-
sider the key exchange and secure channel phases independently, as was the
case for some previous QUIC and TLS 1.3 security analyses [17,14,15,33,18],
because QUIC’s key exchange and secure channel phases are inherently in-
separable and the TLS 1.3 full handshake does not fit into a composability
framework, as discussed in [35,15]. We refer to the full version [9] for our ba-
sic model (which we call msACCE-std) that considers standard security goals
such as server authentication and channel security (which captures data privacy
and integrity) for msACCE protocols. Here we only present our novel msACCE
packet-authentication (msACCE-pauth) model.

msACCE-pauth Overview. In this model, we consider security goals related
to packet authentication beyond those captured by the basic model. Note that
msACCE-std essentially focuses only on the packet fields in the application layer,
while msACCE-pauth further covers transport-layer headers and IP addresses.

First, we consider IP spoofing prevention (a.k.a. source authentication) as
with the QACCE model, but, as illustrated later, generalize one of the QACCE
queries to additionally capture IP spoofing attacks in the full sessions. Then
we define four novel packet-level security notions (elaborated later): KE Header
Integrity, KE Payload Integrity, SC Header Integrity, and Reset Authentication,

TLS 1.3 (over TCP Fast Open) vs. QUIC 11

which enable a comprehensive and fine-grained security analysis of layered pro-
tocols.

In particular, KE Header and Payload Integrity respectively capture the
header and payload integrity of key exchange packets. Such security issues have
not been investigated before and, as we show later, lead to new availability at-
tacks for both TFO+TLS 1.3 and UDP+QUIC. Furthermore, we employ SC
Header Integrity to capture the header integrity of non-reset packets in secure
channel phases. Note that, unlike the availability attacks shown in [35], success-
ful attacks breaking our security notions are harder or impossible to detect by
the client as they do not affect the client’s session key establishment, so they are
more harmful in this sense. Finally, our model captures malicious undetectable
session resets in a secure channel phase with Reset Authentication.

msACCE-pauth Definitions. Like previous models, we consider a very pow-
erful adversary who can control communications between honest parties, can
adaptively learn their stage keys, and can adaptively corrupt servers to learn
their long-term keys and secret states. Our detailed security model is defined
below.

Protocol Entities. The set of parties P consists of two disjoint type of parties:
clients C and servers S, i.e., |P| = |C|+ |S|.

Session Oracles. To capture multiple sequential and parallel protocol execu-
tions, each party P ∈ P is associated with a set of session oracles π1

P , π
2
P , . . .,

where πiP models P executing a protocol instance in session i ∈ N+.

Matching Conversations. As part of the security model, matching conver-
sations are used to model entity authentication, session key confirmation, and
handshake integrity. A client (resp. server) oracle has a matching conversation
with a server (resp. client) oracle if and only if both session oracles observe the
same12 session identifier sid defined according to the protocol specifications
and security goals. Note that a msACCE protocol may have two different session
identifiers in full and resumption modes, but for simplicity we use the same no-
tation sid. Compared to the general definition of matching conversations [3,24],
sid is often defined as a subset of the whole communication transcript. For in-
stance, QUIC’s sid in QACCE [35] is defined as the second-round key exchange
messages, i.e., ClientHello and ServerHello, while the first-round messages
are excluded to allow for valid but different source-address tokens or signatures.
Similarly, TLS 1.2’s sid in ACCE [28] is defined as the first three key exchange
messages, while the rest are excluded to allow for valid but different encrypted
Finished messages.

12 As discussed in [24], two session oracles having matching conversations with each
other may not observe the same transcript due to the gap between one oracle sending
a message and the other receiving it. We can use symmetric session identifiers to
define matching conversations because our msACCE-std model focuses only on server
authentication and we require session identifiers to exclude, if any, a client oracle’s
last key exchange message(s) sent immediately before it sets its session key.

12 Chen et al.

Peers. We say a client oracle and a server oracle are each other’s peer if they
observe the same first-stage session identifier sid1 (i.e., sid restricted to the first
stage), which intuitively means that they set the first stage key with each other.
Note that a client oracle may have more than one peers if sid1 consists of only
message(s) sent from the client oracle, which can be replayed to the same13 server
to establish multiple (identical) first-stage keys. Therefore, a session oracle’s peer
may not be its final unique communication partner. Instead, the real partner is
the session oracle with which the oracle has a matching conversation.

Security Experiments. In the beginning of the experiments, run Kg(1λ) for all
servers to generate the public and secret key pairs and initialize the global states
of all parties and the local states of all session oracles. In the beginning of each
time period, run scfg gen (if defined) for each server to update its configuration
state scfg. We assume that both the server oracles and the adversary A are
aware of the current time period. Let N ∈ N+ denote the maximum number of
msACCE protocol instances for each party. The adversary A is given all public
keys and the IP addresses associated with all parties and then interacts with
the session oracles via the same Connect,Resume,Send,Reveal, Corrupt queries
as in the msACCE-std model14 (which respectively give the adversary abilities
to start and resume a session, send key exchange messages and get responses,
reveal session keys, and corrupt servers, referring to the full version [9] for more
details), as well as the following:

• Connprivate(πiC , π
j
S , cmp), for C ∈ C, S ∈ S, i, j ∈ [N], cmp ∈ {0, 1}.

This query always returns ⊥. If cmp = 1, πiC and πjS establish a complete full
session privately without showing their communication to the adversary. If cmp =
0, πiC and πjS establish a partial full session privately such that the last packet

sent from πiC right before πjS sets its first stage key is blocked.

This query allows the adversary to establish a complete or partial full ses-
sion between any client and server oracles without observing their communica-
tion. By taking an additional flag cmp as input, this query extends the QACCE
Connprivate query [35] to model IP-spoofing attacks happening in both full and
resumption sessions.

• Pack(πiP , ad,m), for P ∈ P, i ∈ [N], ad ∈ AD,m ∈MSC∪MpRST∪{prst, rst}.
This query returns ⊥ if πiP is not in a secure channel phase. If m ∈MSC∪MpRST,
it asks πiP to output the packet that it would send to its peer(s) for the specified
associated data ad and message m according to the protocol, then returns this
packet. If m = prst, πiP generates its pre-reset message (if any, hidden from the
adversary), encrypts it with the specified associated data ad, and outputs the
resulting packet, then this packet is returned. (Recall that each oracle has at
most one pre-reset message, so at most one input message m ∈MpRST ∪{prst}

13 In practice, 0-RTT replay attacks can be mounted to different servers with the same
public-secret key pair. However, 0-RTT key exchange message(s) replayed to other
servers with different public-secret key pairs will be rejected.

14 Note that Encrypt and Decrypt queries are not needed because msACCE-pauth does
not consider data privacy explicitly.

TLS 1.3 (over TCP Fast Open) vs. QUIC 13

is allowed to be queried.) If m = rst, this query asks πiP to output its reset
packet (if any) and returns it.

This query allows the adversary to specify any associated data and any mes-
sage in a secure channel phase, then get the packet output by the specified session
oracle. The adversary can also specify a session oracle to get the packet resulting
from encrypting the session oracle’s pre-reset message (which the adversary does
not know) or get its reset packet.
• Deliver(πiP , pkt), for P ∈ P, i ∈ [N], pkt ∈ {0, 1}∗.
This query returns ⊥ if πiP is not in a secure channel phase. Otherwise, it delivers
pkt to πiP and returns its response.

This query allows the adversary to deliver any packet to a specified session
oracle and get its response in a secure channel phase.

Advantage Measures. An adversary A against a msACCE protocol Π in
msACCE-pauth has the following associated advantage measures.
• IP-Spoofing Prevention. We define Advipsp

Π (A) as the probability that there

exist a client oracle πiC and a server oracle πjS such that the following holds:

1. πjS has set its first stage key right after a Send(πjS , (IPC , IPS , ·, ·)) query;

2. S was not corrupted before πjS set its first stage key;
3. The only allowed queries concerning both C and S in the time period asso-

ciated with πjS are:
- Connprivate(πxC , π

y
S , ·) for any x, y ∈ [N], and

- Send(πyS , (IPC , IPS , ·, ·)) for any y ∈ [N], where (IPC , IPS , ·, ·) is the last
packet received by πyS right before it sets its first stage key.

The above captures the attacks in which the adversary fools a server into
accepting a spurious connection request seemingly from an impersonated client,
without observing any previous communication between the client and server in
the same time period.
• KE Header Integrity. We define Advint-keh

Π (A) as the probability that there
exist a client oracle πiC and a server oracle πjS such that the following holds:

1. πiC has set its session key and has a matching conversation with πjS ;
2. S was not corrupted before πiC set its session key;
3. No interim keys of πiC or its peer(s) were revealed;

4. In a key exchange phase before πiC set its session key, πiC (resp. πjS) accepted

a packet with a new header that was not output by πjS (resp. πiC).

The above captures the attacks in which the adversary modifies the protocol
header of a key exchange packet of the communicating parties without affecting
the client setting its session key. In the above definition, we assume that a client
sets its session key immediately after sending its last key exchange packet(s)
(if any). Then, a forged packet that leads to a successful attack cannot be any
of these last packet(s), which have not yet been sent to the server. The same
assumption is made for KE Payload Integrity defined below.
• KE Payload Integrity. We define Advint-kep

Π (A) as the probability that there

exist a client oracle πiC and a server oracle πjS such that the same 1∼3 conditions
as in the above KE Header Integrity notion and the following holds:

14 Chen et al.

4. In a key exchange phase before πiC set its session key, πiC (resp. πjS) accepted

a packet with a new payload that was not output by πjS (resp. πiC).

The above captures the attacks in which the adversary modifies the payload
of a key exchange packet of the communicating parties without affecting the
client setting its session key.
• SC Header Integrity. We define Advint-h

Π (A) as the probability that A outputs
(P, i, d) such that the following holds:

1. If P = S ∈ S, πiS has a matching conversation with a client oracle πjC ; if
P = C ∈ C, denote S as πiC ’s target server;

2. S was not corrupted before πiP set its last stage key; If forward secrecy is
not required for the d-th stage keys, S was not corrupted in the same time
period associated with πiP ;

3. No stage keys of πiP or its peer(s) were revealed.
4. In the secure channel phase of the d-th stage, πiP accepted a non-reset packet

with a new header that was not output by its peer(s) (via Pack queries), or
πiP accepted a non-reset header-only packet.

The above captures the attacks in which the adversary creates a valid non-
reset secure channel packet by forging the protocol header. Note that in the
above security notion an invalid header forgery is detected immediately after the
malicious packet is received and processed, while the detection of invalid packet
forgeries in a key exchange phase (e.g., for plaintext packets) can be delayed to
the point when the client sets its session key, according to the definitions of KE
Header and Payload Integrity.
• Reset Authentication. We define Advrst-auth

Π (A) as the probability that A out-
puts (P, i, d) such that the same 1∼3 conditions as in the above SC Header
Integrity notion hold and the following holds:

4. In the secure channel of the d-th stage, πiP accepted a packet output by a

Pack(·, ·, prst) query to its peer πjP ′ . Later (in the d-th or a later stage), πiP
accepted a reset packet but A made no Pack(πjP ′ , ·, rst) queries.

The above captures the attacks in which the adversary forges a valid re-
set packet. Note that such attacks are undetectable by the accepting party, as
opposed to a network attacker that simply drops packets.

We say a msACCE protocol Π achieves a security notion in our msACCE se-
curity models if the associated advantage is negligible (in λ) or for any probabilistic-
polynomial-time (PPT) A.

Remark about msACCE Security Model Completeness and Low-Layer
Integrity. Since the payload integrity in secure channels is captured by msACCE-
std, together with msACCE-pauth our models completely capture the authenti-
cation (or integrity) of all packet fields in the transport and application layers.
Furthermore, msACCE-pauth captures (network-layer) IP-Spoofing Prevention
against weaker off-path attackers (i.e., those can only inject packets without
observing the communication), but leaves other integrity attacks on low lay-
ers (e.g., network, link, and physical layers) uncovered. Such attacks may affect
packet forwarding, node-to-node data transfer, or raw data transmission, which
are outside the scope of our work.

TLS 1.3 (over TCP Fast Open) vs. QUIC 15

Table 1. Security Comparison

TLS 1.3 QUIC QUIC[TLS]
+TFO +UDP +UDP [9]

0-RTT Key Forward Secrecy [18] 7 7 7

0-RTT Data Anti-Replay [18] 7 7 7

Server Authentication [9] 3 3 3

Channel Security [9] 3 3 3

IP-Spoofing Prevention 3 3 3

KE Header Integrity 7 7 7

KE Payload Integrity 3 7 7

SC Header Integrity 7 3 3

Reset Authentication 7 7 3

5 Provable Security Analysis

We now analyze and compare the security of TFO+TLS 1.3 and UDP+QUIC,
and refer to the full version [9] for the security analysis of UDP+QUIC[TLS]. The
security results are summarized in Table 1. As mentioned in the Introduction,
by [18] results, no protocol achieves forward secrecy for 0-RTT keys or protects
against 0-RTT data replays (which contribute to the first two rows in the table).
The third and fourth rows reflect security results in our basic msACCE-std model
(see the full version [9] for detailed analyses), which are derived by adapting
existing security results [16,18,33,35] to our model. We now move to the detailed
msACCE-pauth security analyses and start with TFO+TLS 1.3.

5.1 TLS 1.3 over TFO

We refer to Appendix A.1 for TFO+TLS 1.3’s protocol definition. Its session
identifier sidTLS is defined as all key exchange messages from ClientHello to
ServerFinished, excluding TCP headers and IP addresses. The msACCE-pauth
security analyses are shown as follows.

IP-Spoofing Prevention. This security of TFO+TLS 1.3 is provided by the
TFO component through TCP sequence number randomization and TFO cook-
ies. By modeling the cookie generation function, an AES-128 block cipher, as a
PRF F : {0, 1}n × {0, 1}λ → {0, 1}n, we have the following theorem with the
proof in the full version [9]:

Theorem 1. For any PPT adversary A making at most q Send queries, there
exists a PPT adversary B such that:

Advipsp
TFO+TLS 1.3(A) ≤ |S|Advprf

F (B) +
q

min{2|sqn|, 2n}
.

KE Header Integrity. TFO+TLS 1.3 does not achieve this security notion
because TCP headers are never authenticated. We find a new practical attack
below, where a PPT adversary A can always get Advint-keh

TFO+TLS 1.3(A) = 1:

16 Chen et al.

TFO Cookie Removal. A can first make πi
′

C complete a full handshake with πj
′

S

(via Connect,Send queries), then query Resume(πiC , π
j
S , i
′) (i > i′, j > j′) to get

the output packet (IPC , IPS , H, pd), which is a SYN packet with a TFO cookie.
A then modifies the opt field of H to get a new H ′ 6= H that contains no cookie.
The resulting SYN packet will be accepted by πjS , which will then respond with
a SYN-ACK packet that does not contain a TFO cookie, indicating a fallback to
the standard 3-way TCP. As a result, a 1-RTT handshake is needed to complete
the connection and any 0-RTT data sent with SYN would be retransmitted. This
eliminates the entire benefit of TFO without being detected, resulting in reduced
performance and increased handshake latency. A similar attack is possible by
removing the TFO cookie in a server’s SYN-ACK packet.

Interestingly, clients are supposed to cache negative TFO responses and avoid
sending TFO connections again for a lengthy period of time. This is because the
most likely explanation for this behavior is that the server does not support
TFO, but only standard TCP [10]. As a result, performing this attack for a
single connection prevents TFO from being used with this server for a lengthy
time period (i.e., days or weeks).

KE Payload Integrity. TFO+TLS 1.3 is secure in this regard simply because
sidTLS consists of the payloads of all key exchange packets exchanged between
the communicating parties before the client set its session key. That is, for any
client oracle that has a matching conversation with any server oracle, by defini-
tion they observe the same sidTLS and hence no key exchange packet payload
can be modified, i.e., Advint-kep

TFO+TLS 1.3(A) = 0 for any PPT adversary A.

SC Header Integrity. TFO+TLS 1.3 does not achieve this security again
because of the unauthenticated TCP headers. A PPT adversary A can get
Advint-h

TFO+TLS 1.3(A) = 1 by either modifying the TCP header of an encrypted
packet (e.g., reducing the window value) or by forging a header-only packet (e.g.,
removing the payload of an encrypted packet and changing its ack value). Such
packets are valid and will be accepted by the receiving session oracle.

The above fact exposes the adversary’s ability to arbitrarily modify or even
entirely forge the information in the TCP header, which is being relied on to
provide reliable delivery, in-order delivery, flow control, and congestion control
for the targeted flow. This leads to a whole host of availability attacks that the
networking community has been slowly uncovering via manual investigation over
the last 30 years [46,27,2,8,31,30,25,41,7,21,40,36,48,26]. Some of the practical
attacks are described in the full version [9].

Reset Authentication. TFO+TLS 1.3 is insecure in this sense because
its reset packet, TCP Reset, is an unauthenticated header-only packet. This
leads to a practical attack below, where a PPT adversary A always gets
Advrst-auth

TFO+TLS 1.3(A) = 1:

TCP Reset Attack. A can first make two session oracles complete a handshake
using Connect,Send queries, then use Pack,Deliver queries to let them exchange
secure channel packets. By observing these packet headers, A can easily forge a
valid reset packet by setting its RST bit to 1 and the remaining header fields

TLS 1.3 (over TCP Fast Open) vs. QUIC 17

to reasonable values. This attack will cause TCP to tear down the connection
immediately without waiting for all data to be delivered.

Note that even an off-path adversary who can only inject packets into the
communication channel may be able to accomplish this attack. The injected TCP
reset packet needs to be within the receive window for the client or server, but [48]
demonstrated that a surprisingly small number of packets is needed to achieve
this, thanks to the large receive windows typically used by implementations.

5.2 QUIC over UDP

We refer to Appendix A.2 for UDP+QUIC’s protocol definition. Its session iden-
tifier sidQUIC is defined as the ClientHello payload and ServerHello, exclud-
ing IP addresses. The msACCE-pauth security analyses are shown as follows.

IP-Spoofing Prevention. In [35], QUIC has been proven secure against IP
spoofing based on the AEAD security. Their IP-spoofing security notion is the
same as our IP-Spoofing Prevention notion for UDP+QUIC except that ours ad-
ditionally captures attacks in full sessions. However, since source-address tokens
are validated in both full and resumption sessions, their results can be trivially
adapted to show that UDP+QUIC achieves IP-Spoofing Prevention.

KE Header and Payload Integrity. UDP+QUIC does not achieve
these security notions because its first-round key exchange messages, i.e.,
InchoateClientHello and ServerReject, and any invalid ClientHello are
not fully authenticated. Interestingly, a variety of existing attacks on QUIC’s
availability discovered in [35] are all examples of key exchange packet manipula-
tions (e.g., the server config replay attack, connection ID manipulation attack,
etc.), but these attacks cause connection failure and hence are easy to detect.
However, successful attacks breaking KE Header or Payload Integrity will be
harder (if not impossible) to detect.

For KE Header Integrity, we do not find any harmful attacks but theoretical
attacks exist. For instance, a PPT adversary A can get Advint-keh

UDP+QUIC(A) =

1 as follows. A can first query Connect(πiC , π
j
S) to get the output packet

(IPC , IPS , H, pd), then modify the flag and sqn fields of H to get a new header
H ′ 6= H that only changes sqn’s length but not its value. The resulting packet
will be accepted by πjS . This attack has no practical impact on UDP+QUIC but
it successfully modifies the protocol header without being detected.

For KE Payload Integrity, we find a new practical attack described below
where a PPT adversary A can get Advint-kep

UDP+QUIC(A) ≈ 1:

ServerReject Triggering. A can first let πi
′

C complete a full handshake with πj
′

S

with Connect,Send queries, then query Resume(πiC , π
j
S , i
′) (i > i′, j > j′) to get

the output ClientHello packet. A then modifies its payload by replacing the
source-address token stk with a random value, which with high probability is
invalid. Sending this modified packet to πjS will trigger a ServerReject packet
containing a new valid stk. This as a result downgrades the original 0-RTT re-
sumption connection to a full 1-RTT connection, which causes increased latency

18 Chen et al.

and results in the retransmission of any 0-RTT data. Note that this attack is
hard to detect because πiC may think its original stk′ has expired (although this
does not happen frequently).

SC Header Integrity. UDP+QUIC is secure in this regard because it does not
allow header-only packets to be sent in the secure channel phases and the entire
protocol header is taken as the associated data authenticated by the underlying
AEAD scheme. Therefore, UDP+QUIC’s SC Header Integrity can be reduced
to its level-1 Channel Security. Formally, for any PPT adversary A there exists
a PPT adversary B such that Advint-h

UDP+QUIC(A) ≤ 2Advcs-1
UDP+QUIC(B), where

the constant 2 is due to advantage definition differences between creating a valid
forgery and guessing a correct bit.

Reset Authentication. UDP+QUIC does not achieve this security notion be-
cause, similar to TCP Reset, its reset packet PublicReset is not authenticated
either. In the following availability attack, a PPT adversary A can always get
Advrst-auth

UDP+QUIC(A) = 1:
PublicReset Attack. A can first make two session oracles complete a handshake
using Connect,Send queries, then use Pack,Deliver queries to let them exchange
secure channel packets. By observing these packet headers, A can easily forge a
valid (plaintext) reset packet by setting its PUBLIC FLAG RESET bit to 1 and
the remaining packet fields to reasonable values (which is easy because it simply
contains the connection ID cid, the sequence number of the rejected packet, and
a nonce to prevent replay). This attack will cause similar effects as described in
the TCP Reset attack. Note that this vulnerability is fixed in QUIC[TLS] (see
the full version [9]).

6 Conclusion

Our work is the first to provide a thorough, formal, and fine-grained security
comparison of the most efficient secure channel establishment protocols on the
market today. By including packet-level attacks in our analysis, our results shed
light on how the reliability, flow control, and congestion control of TFO+TLS
1.3, UDP+QUIC, and UDP+QUIC[TLS] compare besides their basic security,
in adversarial settings.

We found that availability functionalities provided by transport-layer proto-
cols like TCP can be easily compromised without packet-level authentication,
which may undermine the performance of their supporting application-layer pro-
tocols. To protect against availability attacks, new protocols should better im-
plement and authenticate their own transport functionalities like QUIC does.
Besides, the key exchange packet integrity should also be scrutinized to avoid
serious undetectable availability attacks.

Acknowledgments

We thank the anonymous reviewers for their comments. This paper is based upon
work supported by the National Science Foundation under Grant No. 1422794.

TLS 1.3 (over TCP Fast Open) vs. QUIC 19

References

1. HTTPS encryption on the web - Google transparency report (2018), https://

transparencyreport.google.com/https/overview
2. Abramov, R., Herzberg, A.: TCP ack storm DoS attacks. In: IFIP International

Information Security Conference. pp. 29–40 (2011)
3. Bellare, M., Rogaway, P.: Entity authentication and key distribution. In: Annual

International Cryptology Conference. pp. 232–249. Springer (1993)
4. Bhargavan, K., Blanchet, B., Kobeissi, N.: Verified models and reference imple-

mentations for the tls 1.3 standard candidate. In: Security and Privacy (SP). pp.
483–502. IEEE (2017)

5. Bhargavan, K., Fournet, C., Kohlweiss, M., Pironti, A., Strub, P.Y., Zanella-
Béguelin, S.: Proving the TLS handshake secure (as it is). In: Proceedings of
CRYPTO (2014)

6. Brendel, J., Fischlin, M., Günther, F.: Breakdown resilience of key exchange pro-
tocols and the cases of newhope and tls 1.3. Cryptology ePrint Archive, Report
2017/1252 (2017)

7. Cao, Y., Qian, Z., Wang, Z., Dao, T., Krishnamurthy, S.V., Marvel, L.M.: Off-
path TCP exploits: Global rate limit considered dangerous. In: USENIX Security
Symposium (2016)

8. Centre for the Protection of National Infrastructure: Security assessment of the
transmission control protocol. Tech. Rep. CPNI Technical Note 3/2009, Centre for
the Protection of National Infrastructure (2009)

9. Chen, S., Jero, S., Jagielski, M., Boldyreva, A., Nita-Rotaru, C.: Secure commu-
nication channel establishment: Tls 1.3 (over tcp fast open) vs. quic. Cryptology
ePrint Archive, Report 2019/433 (2019), https://eprint.iacr.org/2019/433

10. Cheng, Y., Chu, J., Radhakrishnan, S., Jain, A.: TCP Fast Open. RFC 7413 (Ex-
perimental) (Dec 2014)

11. Cremers, C., Horvat, M., Scott, S., v. Merwe, T.: Automated analysis and
verification of tls 1.3: 0-rtt, resumption and delayed authentication. In: 2016
IEEE Symposium on Security and Privacy (SP). vol. 00, pp. 470–485 (2016).
https://doi.org/10.1109/SP.2016.35

12. Cremers, C., Horvat, M., Hoyland, J., Scott, S., van der Merwe, T.: A comprehen-
sive symbolic analysis of tls 1.3. In: Proceedings of the 2017 ACM SIGSAC Con-
ference on Computer and Communications Security. pp. 1773–1788. ACM (2017)

13. Delignat-Lavaud, A., Fournet, C., Kohlweiss, M., Protzenko, J., Rastogi, A.,
Swamy, N., Béguelin, S.Z., Bhargavan, K., Pan, J., Zinzindohoue, J.K.: Implement-
ing and proving the TLS 1.3 record layer. In: 2017 IEEE Symposium on Security
and Privacy, SP 2017. pp. 463–482. IEEE Computer Society (2017)

14. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of the
tls 1.3 handshake protocol candidates. In: ACM SIGSAC Conference on Computer
and Communications Security. pp. 1197–1210. CCS ’15, ACM, New York, NY,
USA (2015)

15. Dowling, B., Fischlin, M., Günther, F., Stebila, D.: A cryptographic analysis of
the tls 1.3 draft-10 full and pre-shared key handshake protocol. Cryptology ePrint
Archive, Report 2016/081 (2016), https://eprint.iacr.org/2016/081

16. Dowling, B.J.: Provable security of internet protocols. Ph.D. thesis, Queensland
University of Technology (2017)

17. Fischlin, M., Günther, F.: Multi-stage key exchange and the case of google’s quic
protocol. In: Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security. pp. 1193–1204. ACM (2014)

https://transparencyreport.google.com/https/overview
https://transparencyreport.google.com/https/overview
https://eprint.iacr.org/2019/433
https://doi.org/10.1109/SP.2016.35
https://eprint.iacr.org/2016/081

20 Chen et al.

18. Fischlin, M., Günther, F.: Replay attacks on zero round-trip time: The case of
the tls 1.3 handshake candidates. In: Security and Privacy (EuroS&P), 2017 IEEE
European Symposium on. pp. 60–75. IEEE (2017)

19. Fischlin, M., Günther, F., Marson, G.A., Paterson, K.G.: Data is a stream: Security
of stream-based channels. In: Annual Cryptology Conference. pp. 545–564. Springer
(2015)

20. Gebhart, G.: Tipping the scales on https: 2017 in review (December 2017), https:
//www.eff.org/deeplinks/2017/12/tipping-scales-https

21. Gilad, Y., Herzberg, A.: Off-path attacking the web. In: WOOT. pp. 41–52 (2012)
22. IP Latency Statistics — Verizon Enterprise Solutions: Verizon Enterprise Solutions

(2018), http://www.verizonenterprise.com/about/network/latency/
23. Iyengar, J., Thomson, M.: Quic: A udp-based multiplexed and se-

cure transport (January 2019), https://quicwg.org/base-drafts/

draft-ietf-quic-transport.html
24. Jager, T., Kohlar, F., Schäge, S., Schwenk, J.: On the security of tls-dhe in the stan-

dard model. In: Advances in Cryptology–CRYPTO 2012, pp. 273–293. Springer
(2012)

25. Jero, S., Lee, H., Nita-Rotaru, C.: Leveraging State Information for Automated
Attack Discovery in Transport Protocol Implementations. In: IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks (2015)

26. Jero, S., Hoque, E., Choffnes, D., Mislove, A., Nita-Rotaru, C.: Automated At-
tack Discovery in TCP Congestion Control Using a Model-guided Approach. In:
Network and Distributed Systems Security Symposium (NDSS) (2018)

27. Joncheray, L.: A simple active attack against TCP. In: USENIX Security Sympo-
sium (1995)

28. Krawczyk, H., Paterson, K.G., Wee, H.: On the security of the tls protocol: A
systematic analysis. In: Advances in Cryptology–CRYPTO 2013, pp. 429–448.
Springer (2013)

29. Krawczyk, H., Wee, H.: The optls protocol and tls 1.3. In: Security and Privacy
(EuroS&P), 2016 IEEE European Symposium on. pp. 81–96. IEEE (2016)

30. Kumar, V.A., Jayalekshmy, P.S., Patra, G.K., Thangavelu, R.P.: On remote ex-
ploitation of TCP sender for low-rate flooding denial-of-service attack. IEEE Com-
munications Letters 13(1), 46–48 (2009)

31. Kuzmanovic, A., Knightly, E.: Low-rate TCP-targeted denial of service attacks
and counter strategies. IEEE/ACM Transactions on Networking 14(4), 683–696
(2006)

32. Langley, A., Chang, W.: Quic crypto (2016), https://docs.google.com/

document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
33. Li, X., Xu, J., Zhang, Z., Feng, D., Hu, H.: Multiple handshakes security of tls 1.3

candidates. In: Security and Privacy (SP), 2016 IEEE Symposium on. pp. 486–505.
IEEE (2016)

34. Linden, G.: Make data useful (2006), https://sites.google.com/site/glinden/
Home/StanfordDataMining.2006-11-29.ppt

35. Lychev, R., Jero, S., Boldyreva, A., Nita-Rotaru, C.: How secure and quick is quic?
provable security and performance analyses. In: Security and Privacy (SP), 2015
IEEE Symposium on. pp. 214–231. IEEE (2015)

36. Morris, R.: A weakness in the 4.2 BSD unix TCP/IP software. Tech. rep., AT&T
Bell Leboratories (1985)

37. Patton, C., Shrimpton, T.: Partially specified channels: The TLS 1.3 record layer
without elision. In: ACM SIGSAC Conference on Computer and Communications
Security. ACM (2018)

https://www.eff.org/deeplinks/2017/12/tipping-scales-https
https://www.eff.org/deeplinks/2017/12/tipping-scales-https
http://www.verizonenterprise.com/about/network/latency/
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html
https://quicwg.org/base-drafts/draft-ietf-quic-transport.html
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://docs.google.com/document/d/1g5nIXAIkN_Y-7XJW5K45IblHd_L2f5LTaDUDwvZ5L6g/edit
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt
https://sites.google.com/site/glinden/Home/StanfordDataMining.2006-11-29.ppt

TLS 1.3 (over TCP Fast Open) vs. QUIC 21

38. Postel, J.: User datagram protocol. RFC 768 (Standard) (1980)
39. Postel, J.: Transmission control protocol. RFC 793 (Standard) (1981)
40. Qian, Z., Mao, Z.M.: Off-path TCP sequence number inference attack - how firewall

middleboxes reduce security. In: IEEE Symposium on Security and Privacy. pp.
347–361 (2012)

41. Qian, Z., Mao, Z.M., Xie, Y.: Collaborative TCP sequence number inference attack:
how to crack sequence number under a second. In: ACM Conference on Computer
and Communications Security (2012)

42. Radhakrishnan, S., Cheng, Y., Chu, J., Jain, A., Raghavan, B.: Tcp fast open. In:
Proceedings of the Seventh COnference on emerging Networking EXperiments and
Technologies. p. 21. ACM (2011)

43. Rescorla, E.: The Transport Layer Security (TLS) Protocol Version 1.3. RFC 8446
(Aug 2018)

44. Rogaway, P.: Authenticated-encryption with associated-data. In: Proceedings of
the 9th ACM conference on Computer and communications security. pp. 98–107.
ACM (2002)

45. Roskind, J.: Quic(quick udp internet connections): Multiplexed stream transport
over udp. Technical report, Google (2013)

46. Savage, S., Cardwell, N., Wetherall, D., Anderson, T.: TCP congestion control
with a misbehaving receiver. ACM SIGCOMM Computer Communication Review
29(5) (1999)

47. Thomson, M., Turner, S.: Using transport layer security (tls) to secure quic (Jan-
uary 2019), https://quicwg.org/base-drafts/draft-ietf-quic-tls.html

48. Watson, P.: Slipping in the window: TCP reset attacks. Tech. rep.,
CanSecWest (2004), http://bandwidthco.com/whitepapers/netforensics/

tcpip/TCPResetAttacks.pdf

A TFO+TLS 1.3 and UDP+QUIC Protocol Definitions

A.1 TFO+TLS 1.3 Protocol Definition

Referring to the msACCE protocol syntax, a TFO+TLS 1.3 2-RTT full hand-
shake (see Fig. 1) is a 2-stage msACCE protocol in the full mode and a 0-RTT
resumption handshake (see Fig. 1) is a 3-stage msACCE protocol in the resump-
tion mode. Note that we focus only on the main components of the handshakes
and omit more advanced features such as 0.5-RTT data, client authentication,
and post-handshake messages (except NewSessionTicket). In a full handshake,
the initial keys are set after sending or receiving ServerHello and the final keys
(i.e., session keys) are set after sending or receiving ClientFinished (but only
handshake messages up to ServerFinished are used for final key generation).
In a 0-RTT resumption handshake, the parties set 0-RTT keys to encrypt or
decrypt 0-RTT data, after sending or receiving ClientHello.

According to the TFO and TLS 1.3 specifications [10,43], the TFO+TLS
1.3 header contains the TCP header [39]. We ignore some uninteresting header
fields such as port numbers and the checksum because modifying them only
leads to redirected or dropped packets. Such adversarial capabilities are already
considered in the msACCE security models. We thus define the header space
H as containing the following fields: a 32-bit sequence number sqn, a 32-bit

https://quicwg.org/base-drafts/draft-ietf-quic-tls.html
http://bandwidthco.com/whitepapers/netforensics/tcpip/TCP Reset Attacks.pdf
http://bandwidthco.com/whitepapers/netforensics/tcpip/TCP Reset Attacks.pdf

22 Chen et al.

acknowledgment number ack, a 4-bit data offset off, a 6-bit reserved field resvd,
a 6-bit control bits field ctrl, a 16-bit window window, a 16-bit urgent pointer
urgp, a variable-length (≤ 320-bit) padded options opt. For encrypted packets,
H additionally contains the TLS 1.3 record header fields: an 8-bit type type, a
16-bit version ver, and a 16-bit length len. We further define reset packets as
those with the RST bit (i.e., the 4-th bit of ctrl) set to 1. Note that scfg gen is
undefined.

TLS 1.3 enforces different content types for encrypted key exchange and
secure channel messages. For simplicity, we defineMKE andMSC as consisting of
bit strings differing in their first bits.MpRST = ∅. We refer to the full version [9]
for the remaining TFO details and to [18,6] for the detailed descriptions of TLS
1.3 handshake messages and key generations in earlier TLS 1.3 drafts as well as
[43] for the latest updates.

A.2 UDP+QUIC Protocol Definition

Referring to the msACCE protocol syntax, an UDP+QUIC 1-RTT full hand-
shake (see Fig. 2) is a 2-stage msACCE protocol in the full mode and a 0-RTT
resumption handshake (see Fig. 2) is a 2-stage msACCE protocol in the resump-
tion mode. The initial keys are set after sending or receiving ClientHello and
the final keys (i.e., session keys) are set after sending or receiving ServerHello.

According to the UDP and QUIC specifications [45,38,32], the UDP+QUIC
header contains the UDP header [38] and the QUIC header (described below).
As with the TCP header, we ignore the port numbers and checksum in the UDP
header. Similarly, we also ignore the UDP length field because it only affects
the length of the QUIC header and payload. We thus can completely omit the
UDP header and define the header space H as containing the following fields: an
8-bit public flag flag, a 64-bit connection ID cid, a variable-length (≤ 48-bit)
sequence number sqn, and other optional fields. We further define reset packets
as those with the PUBLIC FLAG RESET bit (i.e., the 7-th bit of flag) set to
1. A reset packet header only contains flag and cid.

As with TLS 1.3, we defineMKE andMSC as consisting of bit strings differing
in their first bits. MpRST = ∅. We refer to [35] for the detailed descriptions of
scfg gen and QUIC handshake messages and key generations.

	Secure Communication Channel Establishment:TLS 1.3 (over TCP Fast Open) vs. QUIC

