
Controller-Oblivious Dynamic Access Control in
Software-Defined Networks

Steven R. Gomez∗, Samuel Jero∗, Richard Skowyra∗, Jason Martin†, Patrick Sullivan∗, David Bigelow†,
Zachary Ellenbogen∗, Bryan C. Ward∗, Hamed Okhravi∗ and James W. Landry†

MIT Lincoln Laboratory, Lexington, MA USA
email: ∗{first.last}@ll.mit.edu, †{jnmartin, dbigelow, jwlandry}@ll.mit.edu

Abstract—Conventional network access control approaches are
static (e.g., user roles in Active Directory), coarse-grained (e.g.,
802.1x), or both (e.g., VLANs). Such systems are unable to
meaningfully stop or hinder motivated attackers seeking to
spread throughout an enterprise network. To address this threat,
we present Dynamic Flow Isolation (DFI), a novel architecture
for supporting dynamic, fine-grained access control policies
enforced in a Software-Defined Network (SDN). These policies
can emit and revoke specific access control rules automatically
in response to network events like users logging off, letting the
network adaptively reduce unnecessary reachability that could be
potentially leveraged by attackers. DFI is oblivious to the SDN
controller implementation and processes new packets prior to the
controller, making DFI’s access control resilient to a malicious
or faulty controller or its applications. We implemented DFI
for OpenFlow networks and demonstrated it on an enterprise
SDN testbed with around 100 end hosts and servers. Finally,
we evaluated the performance of DFI and how it enables a
novel policy, which is otherwise difficult to enforce, that protects
against a surrogate of the recent NotPetya malware in an infection
scenario. We found that the threat was most limited in its
ability to spread using our policy, which automatically restricted
network flows over the course of the attack, compared to no
access control or a static role-based policy.

I. INTRODUCTION

Access control in traditional enterprise networks is chal-
lenging to implement in a fine-grained manner because the
Ethernet and IP protocols are architected to enable connectivity
rather than restrict it. Static, coarse-grained access control can
be implemented at Layer 2 via VLANs or 802.11x [1], but
more fine-grained or dynamic approaches must generally be
implemented at the application layer (e.g., Kerberos). This
has two consequences that can be taken advantage of by
malicious parties. First, enterprise networks have a high degree
of reachability between machines in Layers 2 and 3, even
if application-layer traffic is unauthorized (discussed further
in Section II). This reachability, which may be unnecessary
for the mission of the network, enables adversaries to exploit
many software vulnerabilities (e.g., in the network stack or
authentication logic) regardless of their ability to authenticate.
Second, handling access control at the application layer in-

DISTRIBUTION STATEMENT A. Approved for public release: distribu-
tion unlimited. This material is based upon work supported by the Depart-
ment of Defense under Air Force Contract No. FA8721-05-C-0002 and/or
FA8702-15-D-0001. Any opinions, findings, conclusions or recommendations
expressed in this material are those of the author(s) and do not necessarily
reflect the views of the Department of Defense.

troduces complexity with respect to credential management,
especially when considering edge cases. For example, Active
Directory (AD) credentials are cached locally on endpoints
so a user on a machine disconnected from the network can
still log on locally. Unfortunately, attackers with system-
level privileges can dump these credentials and use them to
authenticate remotely as the victim, even if that victim is not
legitimately logged onto any devices.

Both techniques are common steps in attacks against en-
terprise networks that involve lateral movement, in which
the attacker spreads from an initial foothold deeper into the
network in order to compromise a high-value machine, such
as a database containing personally-identifiable information.
Recently, the NotPetya family of ransomware used both of
the above techniques to infect over one million computers
in Ukraine in 2017, spanning two thousand companies and
causing over $10 billion in total damages [2], [3]. It gained
a foothold inside an enterprise via a compromised update
server, then spread to other systems using a combination
of vulnerability exploitation and credential theft [4]. Similar
patterns were used recently in high-profile attacks against
Equifax [5], Bangladesh Bank [6], Anthem [7], Chase [8],
Target [9], and RSA Security [10]. Increased threats from
ransomware and the resurgence of self-propagating worms
in 2018 [11] further highlight the importance of the lateral-
movement threat.

It is clear that static, coarse-grained Layer 2 access control
systems do not effectively inhibit an attacker’s ability to
reach target machines, and fine-grained application-layer ap-
proaches can be bypassed through exploitation. Furthermore,
neither is sufficiently aware of the larger context of user
activities to distinguish between legitimate user log-on events
and malicious credential theft. In order to secure enterprise
networks, we propose three requirements for an access control
system. First, it must enforce permissions that are at least
as fine-grained as existing application-layer approaches (e.g.,
user- and machine-specific roles). Second, it must enforce
permissions in the network infrastructure to prevent endpoint
software exploitation. Third, it must support policies that grant
or revoke fine-grained permissions in response to security-
relevant events happening in-network or on network endpoints.

A number of challenges must be overcome to support such
a fine-grained, dynamic network access control system. First,
defining event-driven policies on high-level identifiers (e.g.,

usernames and hostnames) but enforcing them in-network
requires the ability to dynamically map these identifiers to
potentially changing packet-header information (e.g., IP and
MAC address). Second, the complete access control policy
cannot be fully cached in switches because of switch memory
limitations and policy fragments that cannot always be mapped
to concrete flow-rule match fields. For example, policy about
a user cannot be specified in terms of IP addresses when the
user is logged off all devices. Third, in order to achieve policy-
switch consistency, as events arrive and cause policy changes,
any new policy must be instantiated in network switches and
now-stale policies must be evicted. This consistency must be
achieved without disrupting ongoing network flows that remain
allowed, or enabling flows that are newly denied by policy.
Fourth, the system must not be easily bypassable by an attacker
who has compromised network endpoints, even if they can
send arbitrary traffic into the network. Finally, this system
must be able to operate on large networks without imposing
prohibitive delay on allowed network flows.

To address these challenges, we present an OpenFlow-
based architecture called Dynamic Flow Isolation (DFI) for
controller-oblivious, dynamic network access control. This
paper makes the following contributions:

• The design of a novel architecture that enables dynamic
network access control policies independently of the
OpenFlow controller, enabling a variety of control-plane
configurations and providing protection from malicious
SDN controller applications.

• An implementation of the architecture that demonstrates
its feasibility and overcomes the above-mentioned design
challenges.

• A quantitative evaluation of the system’s overhead show-
ing that DFI increases the time-to-first-byte latency for
data transiting an SDN by 17.8ms under no load. This
additional latency increases to 86.7ms at 700 flows/sec,
when saturation begins. The maximum throughput DFI
can achieve is approximately 1350 flows/sec.

• A demonstration of an attack scenario in which DFI
enforces a novel, dynamic role-based access control pol-
icy that is uniquely enabled by the system. We evaluate
DFI using a surrogate of the NotPetya self-propagating
malware, and show that the DFI policy slows and limits
the surrogate’s spread.

II. DYNAMIC ACCESS CONTROL USING SDNS

Intranetwork access control in traditional Ethernet IP en-
terprise networks has historically been both static and coarse-
grained. For example, 802.1x [1] is a port-based access-control
standard that conducts a single authentication check when a
device connects to the network. Based on this check, all traffic
to that device is either allowed or denied. 802.1x is static:
events occurring in the network post-authentication (e.g., users
logging off) cannot influence the policy implemented earlier. It
is also coarse-grained, since network flows cannot be allowed
or denied individually. This is a limitation of the architecture
of Ethernet IP networks. All devices in the same collision

domain are accessible to one another at Layer 2, and thus can
mutually send and receive network flows regardless of higher-
layer policies. VLANs allow finer-grained control of Layer 2
endpoint reachability, but the set of reachable hosts remains
static after configuration. Switches are configured to add or
remove specific VLAN tags on specific ports regardless of the
actual network usage by the device on that port. At Layer
3, routing tables are relatively static and cannot be changed
at machine timescales to tailor network reachability across
subnets for particular devices.

A growing recognition of the need for more dynamic, fine-
grained control, combined with the limitations above, has
prompted attempts to retrofit this capability at the application
layer. Google’s BeyondCorp [12] system, for example, places
every network service behind an authentication proxy that
authenticates the user and device based on a variety of security
sensors. Unfortunately, it is not clear how this approach
interacts with pre-authentication vulnerabilities, such as those
in a TCP/IP stack triggered upon packet receipt [13], that can
lead to kernel compromise. This approach also requires the
addition of network middleware whose performance impacts
have not been reported.

A more foundational approach to network access control
has been taken by the academic community. This approach
leverages Software-Defined Networking (SDN), specifically
the OpenFlow architecture. OpenFlow divides the network into
physically separate control and data planes. The data plane
forwards traffic from endpoints based on flow rules installed
in OpenFlow switches. These flow rules consist of two parts:
a pattern to match against packet header fields, and an action
to take in the event of a match, such as forwarding over an
egress port. The control plane contains a logically-centralized
controller that reprograms the flow tables in each switch in
response to packets forwarded from data plane switches, for
which there are no matching flow rules. These are referred to
as Packet-in events, and consist of an OpenFlow message
containing the packet header and associated metadata, such as
the switch and port on which the packet was received. By in-
specting Packet-in events (and other OpenFlow messages
sent from the switches), the controller can reactively add and
remove flow rules that together determine the logical network
topology. This allows the network to adapt over time, based
on endpoint traffic and the controller’s network-management
logic.

The majority of modern SDN controllers today, including
Floodlight [14], ONOS [15], and OpenDaylight [16], provide a
firewall application that can be used to implement fine-grained
access control within the network, rather than being limited to
the perimeter like a traditional firewall. Unfortunately, firewall
rules defined using such applications are static: the policy
they enforce does not change in response to events or other
changing security context in the network (e.g., user logs on).

Several academic prototypes have sought to implement fine-
grained access control that modifies the network based on a
sensed security context. Amman and Sommer [17] provide an
API by which the Bro IDS can actuate network access control

policies in response to detection events, for example. Unfor-
tunately, this approach is purely reactive. Access control rules
are installed only after a malicious action has been detected by
Bro, making false positives and negatives a concern. Kinetic
[18] takes a different approach by providing a custom SDN
controller that supports interaction through a flexible policy
language. Arbitrary event sources can drive policy decisions,
enabling access control that is both dynamic and fine-grained.
However, Kinetic’s architecture has not been shown to scale
to large enterprise systems. It is also unclear how network
devices with changing identifiers can be reliably specified
in Kinetic policies, as these policies are not updated when
network identifier-state changes.

Dynamic, fine-grained access control is a key defensive
capability when considering modern threats to enterprise net-
works such as insider attacks and advanced persistent threats
(APTs). Existing attempts to implement it leveraging SDNs
have had partial success, but no one system has been both
scalable for enterprises and able to provide a framework for
the development of event-driven access control policies. Next
we consider the challenges for developing a system like this
and how they can be addressed.

III. DESIGN OF DYNAMIC FLOW ISOLATION

In this section, we present the design of a novel architecture
for enforcing event-driven access control policies in software
defined networks, which we call Dynamic Flow Isolation
(DFI). We first discuss design challenges related to managing
dynamic identifiers and policies efficiently, then describe the
system architecture and how it addresses these challenges.
Finally, we present an end-to-end example illustrating the
operation of DFI.

A. Design Challenges

High-Level Identifiers in Event-Driven Policies. A net-
work access-control policy rule should be specified at a
high enough level that it can be understood by network
administrators and easily expressed by policy authors. This
is particularly important in a dynamic access control system,
since an administrator must be able to understand the current
policy, characterize policies, and debug policy conflicts. Thus,
we want to enable writing policy over high-level identifiers like
hostnames and usernames that are often more human-readable
and memorable compared to identifiers like MAC addresses
and IP addresses. However, network devices fundamentally
only filter packets based on the identifiers present in the actual
network traffic. In particular, OpenFlow-based SDNs support
filtering based on fields in the Link (Ethernet), Network (IP),
and Transport (TCP/UDP) layers.

As a result, there is a semantic gap between the high-level
entity identifiers, like hostnames and usernames, that we would
like to define policy over, and the enforcement of these policies
(flow rules) in the network. In order to handle policies written
with high-level identifiers, these identifiers must be mapped to
the correct set of low-level identifiers that hardware can use to
enforce the policy, e.g., MAC and IP addresses. At the same

time, mappings between high- and low-level identifiers change
regularly. Consider a wired host that moves from one physical
network port to another, a wireless host moving between
access points, or dynamic DNS mappings between a hostname
and IP addresses. Any mechanism used to map between high-
and low-level identifiers must maintain correctness in the face
of these changes.

Caching Policy in Switches. Managing the installation and
caching of flow rules in switches is challenging when the set
of policy rules is large and changes over time. Proactively
installing flow rules that implement policies is not efficient
when the set of policies is large, because hardware switches
can only store a limited number of rules, usually in the range
of 512 to 8,192 [19]–[22]. There may simply not be space
for all policy and routing rules for all possible allowed flows.
Therefore, the subset of rules to install in the switches must
be chosen intelligently.

Furthermore, policy rules may contain high-level identifiers
that cannot be resolved to low-level identifiers until a later
time. For example, the policy rule “The device with hostname
h1 is not allowed to send to TCP port 22 on the device
with hostname h2” must be compiled into one written over
low-level identifiers for the switches, as discussed previously.
However, if h1 or h2 is not yet on the network, it might not
have an IP address reserved. Until that happens, the policy
rule cannot be compiled into a flow rule and pushed to the
switch.

Policy-Switch Consistency. In an event-driven access con-
trol system, policy changes may be frequent. The system must
be able to change the policy enforced on the network in a
timely manner by removing stale rules that are inconsistent
with the current security policy.

OpenFlow-based SDNs support two automated mechanisms
for removing stale rules: hard and soft timeouts. Neither is
suitable as-is for the proposed system, due to unacceptable
performance or security implications.

Hard flow timeouts cause a rule to be deleted after a
specified amount of time. While this helps bound how long
a rule may be stale, hard timeouts interact poorly with long-
running flows. If the hard timeout expires while the rule is still
in active use, packets (possibly thousands in a high bandwidth
flow) will be forwarded to the control plane until the rule is
re-installed. Control-plane processing is orders of magnitude
slower than hardware-backed forwarding, so timing-out an
active flow could cause both a noticeable latency spike and
impose additional load on the control plane.

Soft flow timeouts cause a rule to be deleted if a packet has
not been matched against that rule for a specified amount of
time. This prevents long-running flows from being interrupted.
However, it also introduces a correctness issue: stale flow rules
that no longer reflect current access control policy continue to
reside on switches for as long as they in use. In effect, access
control policy updates would not be applied to pre-existing
flows.

Since neither of these mechanisms is sufficient, a consis-
tency management system is needed that provides both timely

and efficient expiration of stale rules.
Bypass Prevention. Even the most secure access control

policy is not useful if it can be circumvented easily. For
that reason, it is important to design access control systems
to be resistant to bypass. One area of concern in SDNs is
ensuring that the controller cannot be compromised before
access control checks are done. A number of recent works
have demonstrated the vulnerability of controllers to various
poisoning attacks on topology and network identifiers, as well
as malicious apps [23]–[26]. This suggests that access control
must be done before any other processing in the control plane.
That way, illegal packets can be rejected before they are able to
poison other controller components, possibly to bypass access
control mechanisms.

Efficient Operation. Finally, in addition to handling policy
updates and new flows correctly, an access control system with
event-driven policies must also perform efficiently, minimizing
undue latency on flows and load on the control plane.

B. DFI Architecture

At a high level, DFI consists of five components that interact
with each other to decide on policies in response to events,
manage current policies, resolve high-level identifiers, compile
policies to flow rules, and then manage those rules in the
switches. We discuss each of these components below and
display the overall architecture in Figure 1.

Policy Decision Points (PDPs). The role of a PDP is
to evaluate conditions that apply to a desired event-driven
access control policy – for example, “When host h1 has
a log-on event, enable its network access”. The PDP then
decides whether its policy applies based on those conditions,
and automatically creates or revokes rules that implement
the current policy. To do this, a PDP subscribes to zero or
more sensor feeds, whose events can originate from the data
plane (e.g., DNS, DHCP servers), end hosts (e.g., anti-virus
software), the control plane (e.g., OpenFlow events), or even
off-network (e.g., a building alarm system).

DFI supports deploying multiple PDPs, enabling each to
focus on providing a particular type of policy (Role-Based Ac-
cess Control, Quarantine Upon Compromise, etc.). Conflicts
between policy rules emitted by different PDPs are resolved
by the Policy Manager using a unique priority assigned to the
PDP by the network administrator.

Policy rules themselves are tuples consisting of (Action,
Flow Properties, Source, Destination). Action can be Allow
or Deny, and Flow Properties include EtherType and IP
protocol values. Source and Destination describe the endpoints
of flows matching this rule as tuples over the following
identifiers: username, hostname, IP address, TCP/UDP port,
MAC address, switch port, and switch DPID. Each field can
be either a specific value or a wildcard.

For example, a PDP that enforces a user-based policy might
emit the following policy:

(Allow, (∗, ∗),(Alice, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗),
(Bob, ∗, ∗, ∗, ∗, ∗, ∗, ∗, ∗))

This policy would permit any machine that Alice is using to
communicate over any protocol with any machine that Bob is
using.

If a PDP later determines that a policy rule it has generated
no longer applies, it can revoke that rule using a unique
identifier assigned when the policy rule was added. Revocation
is distinct from installing a second policy rule with the
opposite Action. After revocation, a previously-matched flow
will now be matched against any other policy rules, likely
from other PDPs. A PDP should not generate multiple rules
that match a single flow with conflicting Action values, since
rules inherit the priority value of their PDP; however, in this
case, the Deny action will be used to err on the side of stopping
unauthorized flows. Similarly, in the absence of any matching
policy rule, DFI is configured to deny a flow by default.

Policy Manager. The Policy Manager receives policy rules
and revocations from PDPs, performs consistency checks, and
stores the current global policy. It also enables the Policy
Compilation Point to query current policy to determine what
action should be taken for a specific flow.

Consistency checks are extremely important to solving the
Policy-Switch Consistency challenge mentioned earlier. When
a new policy rule is inserted, the Policy Manager identifies any
existing policy rules that potentially conflict with the new one,
since these policy rules may have been used to add flow rules
still present in the network’s switches. Conflicts are possible
where: 1) each flow identifier in an existing rule matches the
new one (exactly or wildcarded), 2) the policy actions are
different, and 3) the priority of the existing rule is lower
than the priority of the new rule. The Policy Manager then
tells the Policy Compilation Point to remove any flow rules
derived from these conflicting policies from the switches, as
described later. Conflicting policies are not removed from the
policy database: this action merely flushes rules installed in the
switches, ensuring that ongoing flows potentially affected by
the policy change will be re-evaluated. When a policy rule is
explicitly revoked by a PDP, the Policy Manager also instructs
the Policy Compilation Point to flush any flow rules derived
from this policy from the switches. In this way, flow rules are
removed quickly without paying the latency and performance
costs of using hard timeouts.

Entity Resolution Manager. The Entity Resolution Man-
ager is responsible for maintaining current mappings between
the high-level identifiers, like usernames and hostnames, that
are used in policy rules and the actual low-level identifiers,
like IP addresses and MAC addresses, that appear in network
traffic and can be used in the switch’s flow rules. Additionally,
it prevents spoofed traffic from being able to bypass policy by
ensuring that identifiers at all levels must match the expected
bindings. To do this, the Entity Resolution Manager tracks the
four identifier bindings shown in Figure 3, linking username
↔ hostname ↔ IP address ↔ MAC address ↔ switch and
port.

Some of these bindings are many-to-many and can change
over time. For instance, users may log onto multiple hosts,
which may have more than one IP address associated with dif-

Policy
Compilation

Point

Identifier Binding
Sensor Events

OpenFlow Switch

Table 0
DFI firewall

isolated from
controller

Table 1+
Managed by
controller for
routing, etc.

Allow

Deny

End Hosts
OpenFlow
Controller

OpenFlow Data Plane DFI Control Plane

DFI Proxy

Policy
Decision
Point(s)

Policy
Manager

Entity
Resolution
Manager

DFI Sensor
Gateway

OpenFlow Control Plane

Legacy Servers

Policy
Sensor(s)

Identifier Binding
Sensor(s)

Policy
Commands

Policy Sensor
Events

Query/Response

Query/
Response

Fig. 1: Architecture of DFI

ferent network interface cards, all of which may be connected
at different physical switch ports. Similarly, IP addresses may
change across DHCP leases, machines may move to different
physical ports, and MAC addresses change with interface (e.g.,
wired vs. wireless).

To maintain these bindings, the Entity Resolution Manager
subscribes to events from identifier-binding sensors across
the network. These sensors are positioned to collect bindings
from authoritative data sources. Authoritative sources are those
responsible for providing one part of the binding between
two identifiers. For example, DNS is the authoritative source
for the binding between a hostname and an IP address, as it
provides the hostname for that IP address. Hence, our sensor
for the hostname to IP address binding collects those bindings
directly from the DNS server. Similarly, our IP Address to
MAC address sensor collects its bindings directly from the
DHCP server, which is authoritative for that binding. By using
authoritative data sources, we prevent attackers from poisoning
the Manager with illegitimate state. Poisoning attacks from
these authoritative sources are out of scope for this work, since
an attacker who has compromised the sources could simply
assign themselves identifiers needed to match or circumvent a
target access control policy.

Using its knowledge of current identifier bindings, the Entity
Resolution Manager responds to queries about new flows
from the Policy Compilation Point, returning any identifiers
associated with the source and destination of the queried flow.
For instance, given an IP address and MAC address from
a packet, the Entity Resolution Manager would return any
associated hostname or username. This information can then
be used to identify matching policy rules.

Instead of mapping high-level identifiers in policies to low-
level identifiers when those policies are added, we choose to
map low-level identifiers in packets to high-level identifiers
during the access control decision. This is crucial to solve a
number of challenges we discussed earlier. First, it ensures
that the mappings between high-level and low-level identifiers
are current at the time the access control decision is made.
If policy identifiers were mapped when the policy rule is
inserted, the policy rule would become incorrect as soon as any

identifier bindings used in the mapping changed. Second, it
enables us to write policy using identifiers that do not currently
have bindings. For instance, we can write policy for a user
who is not currently logged onto any machine. If identifiers
are mapped when the policy rule is added, this would cause an
error. However, mapping identifiers during the access control
decision avoids this problem, because bindings for the user
must exist (updated at the user log-on event) at the time she
sends traffic.

Policy Compilation Point (PCP). The PCP is ultimately
responsible for managing DFI’s policy rules in the switches. In
particular, the PCP processes new flow requests from switches
and installs rules that apply the current policy for the flow.
As mentioned earlier, the PCP also flushes flow rules from
switches at the direction of the Policy Manager after a PDP
decides to update a policy.

When a switch receives a packet that does not match an
installed flow rule in Table 0, it forwards that to the control
plane as an OpenFlow Packet-in event, where the DFI
Proxy (detailed below) will send it to the PCP. The PCP parses
the Packet-in event and collects all source and destination
identifiers present in the packet header (e.g., MAC addresses
and IP addresses) as well as any information supplied by the
switch (e.g., in-port on which packet was received). It then
queries the Entity Resolution Manager with this information
to obtain any other associated identifiers, like hostname and
username, and then queries the Policy Manager for policies
that match this flow. The Policy Manager will return the
highest-priority policy rule matching the flow, if any. Using
the action specified in the policy rule, the PCP creates a flow
rule specific to this flow and installs it into the switch. If
no policy rule matches a new flow, DFI uses a default Deny
policy. Each flow rule is built to match only the exact flow that
was examined by the PCP – all available identifiers (e.g., MAC
addresses, IP addresses, TCP/UDP ports, etc.) are specified in
the rule. This ensures that each new flow will be checked
against current policy by DFI. We also note that allowing a
packet to be forwarded at a switch results in the next switch
in the flow’s data path receiving it and repeating this process,
so the correct policy is always applied at each hop in the flow.

The PCP also processes rule removal requests from the
Policy Manager. As discussed above, these requests are issued
when policy is added or removed by PDPs in order to ensure
that the flow rules cached on switches remain consistent with
the current policy. To accomplish this, each rule inserted into
a switch is tagged with a small piece of persistent metadata—
the cookie value in OpenFlow—indicating the policy from
which it is derived. Then, the PCP uses the metadata value
corresponding to the relevant policy to tell switches to flush
rules derived from that policy.

While minimizing the number of flows processed is beyond
the scope of this work, there is opportunity to extend DFI
with a system for reactive caching of wildcarded flow rules,
as in the recent CAB-ACME system [27]. A key challenge
is to avoid caching wildcarded flow rules that match packets
for which higher-priority policy rules may exist in the Policy
Manager’s database. This is non-trivial for DFI because we
expect changes in the policy database over time, and these
policy rules may contain identifiers that must be mapped
during rule compilation for the SDN.

DFI Proxy. We design DFI to be independent of the
controller to ensure that the controller and its apps cannot
violate or interfere with the access control policy that DFI
is enforcing, either accidentally or intentionally, solving the
No-Bypass challenge mentioned earlier. To do this, we insert
a proxy between the switches and the SDN controller, a
technique used successfully by a variety of earlier SDN
security and reliability tools [28]–[32].

This proxy is responsible for smoothly interposing DFI’s
access control prior to the SDN controller and its applications
and is designed to avoid being a single point of failure
in the architecture. The state it maintains does not persist
between sessions and is relevant only to its particular switch
connections. Multiple proxies, as well as PCPs, can be used in
parallel in an SDN installation for reliability or performance.
The proxy is designed to accomplish two primary goals: isolate
rules inserted by DFI from those inserted by the controller,
ensuring that rules from DFI take precedence, and route
Packet-in messages properly.

To isolate rules inserted by DFI from those inserted by the
controller, the DFI Proxy takes advantage of the multiple flow
tables available in OpenFlow 1.3 and above. In particular, it
reserves Table 0, the first table incoming traffic is checked
against, in each switch for DFI’s access control rules. This
is achieved by rewriting references to tables in all OpenFlow
messages. Section IV contains additional implementation de-
tails about this modification. The end result is that DFI and
the SDN controller are writing rules into separate tables where
DFI’s rules take precedence. Since the DFI Proxy intercepts
the OpenFlow connections for all switches, DFI is aware of
the exact path each flow takes.

The proxy also ensures that incoming Packet-in events
from switches are processed by DFI prior to being sent to the
controller. If a packet is denied by DFI, it is not forwarded to
the controller at all, ensuring that the controller is not poisoned
by inconsistent network state from blocked packets.

C. End-to-End Example

To demonstrate the end-to-end operation of DFI, we present
a simple example, which is depicted in Figure 2. Each endpoint
is running a Security Information and Event Management
(SIEM) collector, such as Splunk, that provides local authen-
tication events to a central indexer. In addition, each endpoint
is part of a Windows domain managed by an Active Directory
(AD) server providing DHCP and DNS services.

Consider the policy “When Alice is logged on, the computer
she is using can communicate with the email server. When she
is logged off, it cannot,” and the situation in which Alice logs
on, checks her email, and logs off the computer. The sequence
of events, denoted by the numbers in Figure 2, is presented as
a linear sequence for ease of exposition. Note that in practice
many of these events are concurrent with one another and will
occur asynchronously.

1 Alice-Laptop joins the AD domain and is assigned
an IP address by DHCP. This traffic is permitted via default
allow rules.

2 The Hostname-IP and IP-MAC identifier-binding sensors
connected to the DNS and DHCP services on the AD server
report these identifier pairs associated with Alice-Laptop
to the Entity Resolution Manager.

3 Alice logs on via AD.
4 The log-on/log-off sensor connected to the SIEM collec-

tor notifies the Entity Resolution Manager and Policy Decision
Point that Alice has logged on to Alice-Laptop.

5 The Policy Decision Point inserts a policy rule into the
Policy Manager that allows flows from Alice to the email
server.

6 Alice tries to check her email. The first packet of the
flow is sent to the control plane via a Packet-in event.

7 The DFI proxy intercepts the Packet-in and sends it
to the Policy Compilation Point.

8 The Policy Compilation Point queries the Entity Reso-
lution Manager service to enrich the source and destination IP
and MAC addresses with associated hostnames and users.

9 The Policy Compilation Point queries the Policy Man-
ager for policy matching the enriched source and destination
identifiers. The Policy Manager returns an Allow decision for
the flow.

10 The Policy Compilation Point creates an Allow-action
flow rule that matches the packet in the Packet-in event
and sends it to switch.

11 The DFI Proxy forwards the Packet-in to the Open-
Flow controller, which installs forwarding rules in the switch.

12 Alice checks her email, then logs off the computer.
13 The log-on/log-off sensor sends a binding expiration

event to the Entity Resolution Manager and a log-off event to
the Policy Decision Point.

14 The Policy Decision Point revokes this policy, which
causes the Policy Manager to notify the Policy Compilation
Point that any flow rules for this policy need to be removed.

15 The Policy Compilation Point removes any rules asso-
ciated with that policy from the switches.

Alice-Laptop

OpenFlow Data Plane

DFI Sensor
Gateway

Active Directory
• Hostname-IP Sensor
• IP-MAC Sensor

SIEM Aggregator
• Log-on/log-off Sensor
• Username-Hostname

Sensor

OpenFlow
Controller

DFI Control Plane

DFI Proxy

Policy
Decision
Point

Policy
Manager

Policy
Compilation

Point

Entity
Resolution
Manager

OpenFlow Control Plane

1 3 6

12

2

4

13

7 11

8

9

10
15

5 14

Fig. 2: DFI Workflow for Example Authentication-Based Policy

Username
Hostname
IP Address
MAC Address
Switch ID & Port

System Event Logs
DNS Server

DHCP Server
Packet-In Event

Authoritative Source Network Identifier

Fig. 3: Authoritative Sources of Identifier Bindings

IV. IMPLEMENTATION

DFI is implemented as a set of communicating servers
providing the core functions detailed in Figure 1. These servers
include one or more Policy Decision Points, a Policy Manager,
an Entity Resolution Manager, and a Policy Compilation
Point. These components are implemented in Java and use
a RabbitMQ message bus to communicate. The messages ex-
changed between these components are created using protocol
buffers [33] to remove language dependencies when extending
or building new components for the system. Both the Policy
Manager and the Entity Resolution Manager are backed by
MySQL databases that maintain a record of current policy
rules and current identifier bindings.

The DFI Proxy is implemented as a Java application that
listens for new connections from switches; for each, it creates
and manages two additional connections to the controller and
PCP. The sockets may be optionally secured using TLS to
encrypt all exchanged OpenFlow messages. The Proxy and
PCP both use OpenFlowJ to parse these messages. Due to
DFI’s use of multiple flow tables, DFI supports OpenFlow
versions 1.3 or later.

A. Identifier-Binding Sensors

The Entity Resolution Manager relies on binding sensors
spread throughout the network to collect information on bind-
ings and ensure that it always has the most current information.
It is particularly important that this binding information always
come from authoritative sources to prevent attackers from
being able to poison DFI’s view of the network. As a result,
we implemented sensors for each of the four bindings that our
Entity Resolution Manager tracks, each of which collects its

bindings from their authoritative source, most of which are
in the data-plane. Figure 3 shows these bindings and their
authoritative source.

The MAC address to switch port binding is challenging
because traditional networks maintain this binding only im-
plicitly, via learning switches, as the last location from which
a MAC address sent traffic. Since this binding is tied to the
physical location of network traffic, we implement it as part
of the PCP in the control plane. This sensor ensures that each
MAC address is associated with at most one port on each
switch, and sends updates to the Entity Resolution Manager.

The username to hostname binding is challenging for a
similar reason. Active Directory (AD) and similar directory
services do not keep track of users who are currently logged
on, and therefore cannot be queried to obtain this information.
AD grants users a Kerberos Ticket-Granting-Ticket and does
not track subsequent log-on or log-off events. Local event logs
maintained by each endpoint contain some of this information;
however, there are multiple ways for users to authenticate in
an operating system like Windows, each of which generates
different events in the log. After experimenting with different
approaches, our sensor implementation maintains a current
count of running processes associated with a user, aggregated
from endpoint logs. This is calculated by monitoring process
creation and termination events. When the total number of
running processes for a user on a host is greater than zero,
the user is considered logged on and able to create flows from
the host. When the total number is zero, they are considered
logged off the system. We collect this information and cen-
trally determine user log-on and log-off events using Splunk,
a widely used Security and Information Event Management
(SIEM) tool.

B. DFI Proxy
The DFI Proxy aims to enforce DFI’s access control without

altering the expected controller and application behavior for al-
lowed flows. This becomes challenging because the controller
assumes it has full access to the switch’s tables and statistics.
As a result, the DFI Proxy must transparently isolate DFI’s
access control rules from the controller’s rules.

The proxy takes advantage of a feature added in OpenFlow
1.3 and later called flow-table pipelining. Pipelining enables

a switch to partition its memory for rules into multiple flow
tables, with an incoming Packet-in being matched against
rules in Table 0 first. A matching rule with the goto_table
action can pass the packet to another table. This action is
accompanied by a table index (table_id) value indicating
the next table. All Flow-Mod messages and some others (e.g.,
statistics requests) also contain a table_id denoting the
table to modify or query.

Our proxy leverages this feature to reserve Table 0 for
access control rules from DFI. Tables 1 and higher are reserved
for the controller. If a flow is allowed, it is forwarded to Table
1, which only contains rules from the controller, for further
instructions that could include forwarding or even continued
pipelining into higher tables. Denied flows are dropped at
Table 0. Reserving Table 0 for DFI means that the controller
should not be able to modify Table 0 or learn about its
contents. We implement this transparently by shifting by one
all table_id references in messages from the controller
to the switch. Similarly, any table reference being sent from
the switch to the controller, e.g., in a statistics reply, must
also be decremented to avoid confusing the controller. This
operation also ensures that existing controller applications
function normally alongside DFI for flows that it allows.

V. EVALUATION

A. Performance Evaluation

We first evaluate the DFI control plane in terms of mi-
crobenchmarks about its minimum latency handling a flow and
its maximum throughput of new flows. We then consider how a
network with DFI performs end-to-end using a small hardware
SDN with OpenFlow switches and an SDN controller; here we
measure the Time to First Byte (TTFB) of new flows, both
with and without DFI, as a function of load on the network.
Other metrics like the total DFI flow rules produced are highly
dependent on policies and operational factors (e.g., traffic) and
therefore are not the focus of this evaluation (see Section III
for options for reducing flow rules in the PCP).

The testbed for these experiments included VMs created
and managed by VMware vSphere, with four 2.1 GHz Intel
Xeon cores and 7.6 GB of RAM running CentOS 7. One
server hosted the core DFI services (PDP, Policy Manager,
Entity Resolution Manager, and PCP) while the DFI Proxy
and SDN controller (ONOS 1.13) ran on another. Our data
plane consisted of three end hosts and a single software switch
running Open vSwitch 2.5.4.

Latency and Throughput Microbenchmarks. The flow-
start latency and maximum throughput of the DFI control
plane help characterize its performance independent of the
SDN controller and network service. When a packet cannot
be matched with an existing flow rule received on a switch
(usually at the start of a new flow), it is sent to be handled
by the DFI control plane, incurring some computation time
before returning an access control rule for the packet. Once
flow rules are installed, subsequent packets in the flow match
these rules and are routed directly through the data plane
without additional latency. The maximum throughput of new

TABLE I: DFI Performance Microbenchmarks

Metric Mean ± Std. Dev.

Latency (under no load) 5.73ms ± 3.39ms
Throughput (at saturation) 1350 flows/sec ± 39 flows/sec

TABLE II: Latency Breakdown

Component Mean Latency ± Std. Dev.

Binding Query 2.41ms ± 0.97ms
Policy Query 2.52ms ± 0.85ms
Other PCP Processing 0.39ms ± 0.27ms
Proxy 0.16ms ± 0.72ms

Overall 5.73ms ± 3.39ms

flows represents the level of network activity beyond which
new flows will experience disconnections or extreme delays.

In order to measure these metrics, we use the cbench
synthetic OpenFlow controller benchmark [34], which we
modified for compatibility with OpenFlow 1.3. The tool emu-
lates an OpenFlow switch and sends packets with randomized
headers to the control plane, with both latency and throughput
measurement modes.

Table I summarizes our microbenchmarks: the flow-start
latency is approximately 5.73ms (from cbench in latency
mode) and DFI can handle approximately 1350 flows/sec
(from cbench in throughput mode) before it is saturated.
Note that the reported flow-start latency includes only the
time for the flow to traverse DFI in one direction and does
not include any additional time required by the actual SDN
controller to route the flow. Additionally, this flow-start la-
tency was measured when the system was otherwise idle.
Table II shows the average time spent per flow during each
of DFI’s subtasks. This breakdown shows that most of the
latency comes from queries to resolve binding information
and determine applicable policy (about 2.5ms each). The other
processing done by the PCP and DFI Proxy is insignificant
(less than 0.6ms combined).

Time to First Byte. We now characterize the performance
impact of using DFI in an SDN in terms of the latency imposed
on the first packet of a flow (Time to First Byte, or TTFB).
All packets after the first will be handled by flow rules in the
switches, so this latency characterizes the primary impact of
reactively installing SDN flow rules, as in DFI, on network
traffic. The TTFB also effectively bounds the speed at which
users can query network services and receive a response. We
measure TTFB as a function of load on the network in order to
characterize any degradation when the control plane becomes
saturated. To do this, we perform a TCP connection from an
end host and measure the time between sending the SYN
and receiving the SYN-ACK; simultaneously, randomized
Ethernet packets are sent into the data plane at varying rates
as background traffic. Note that these TTFB measurements
include the time for DFI and the SDN controller to process
the flow in both directions.

Figure 4 depicts how TTFB varies as a function of the load

0 100 200 300 400 500 600 700 800 900 1000
Background Traffic (flows/s)

0

50

100

150

200

M
ea

n
Ti

m
e

to
 F

irs
t B

yt
e

(m
s)

= 242.6

= 462.8

= 481.4

DFI
No DFI

Fig. 4: Time to First Byte (TTFB) for new flows at different
flow arrival rates. The dashed line indicates the point where
DFI’s queue begins to saturate and drop flows. Error bars show
±1 standard deviation (σ) up until the saturation point, after
which the standard deviation is high.

on the network, both with and without DFI in place. Without
DFI, the TTFB is nearly constant at 4-6ms. While the SDN
controller eventually becomes overloaded and queues packets,
this occurs at significantly higher loads than we measure.
With DFI, the TTFB starts at about 22ms and rises to about
85ms at 700 flows/sec. At higher rates, DFI begins to queue
new flows waiting for binding or policy query responses,
leading to the high variation observed above 800 flows/sec.
The mean TTFB plateaus around 200ms because DFI has
a limited queue size; flows arriving when the queue is full
are dropped and must re-enter the DFI control plane upon
retransmission. This saturation point suggests that DFI can
support small enterprises since existing work [35], [36] has
used 10 flows/sec/device (or 1000 flows/sec total) as a typical
enterprise workload level. Scaling up could be achieved using
multiple DFI Proxy and PCP instances.

B. Security Evaluation

We evaluate potential security benefits that a fine-grained,
event-driven access control policy system like DFI can provide
using a case study with self-propagating malware. We consider
a scenario where the malware infects a foothold in a small
enterprise network, and then tries to spread across the network
over the course of a business day.

Threat Model. We consider a threat model where the
SDN controller, switches, and core network services (DNS,
DHCP, etc.) are secure and not compromised and end hosts
are traditional enterprise desktops that are always on and
connected to the network with users logging on and off
throughout the day. These desktops may become infected by
an automated worm that would attempt to infect and destroy as
many machines as possible. This threat model is motivated by
the recent resurgence of self-propagating malware, such as the
NotPetya and WannaCry ransomware. While our discussion in
the rest of this paper is focused on this threat model, we believe
that other scenarios (wireless devices, BYOD devices) share

the same fundamental issue: systems are overly privileged and
dynamic signals exist that indicate when these privileges could
be reduced.

To simulate the threat of self-propogating malware, like
NotPetya and WannaCry, we constructed a surrogate of the
NotPetya malware (henceforth, the “worm”) based on its
propagation logic (see [37], [38]) to see how various access
control policies reduce the spread of the infection.

At the start of the attack, we assume the worm has a
foothold on one end host in the network. Once installed, it
gathers a target list of end hosts and servers in the network
through reconnaissance, and then tries to propagate to each
target serially in a loop. The worm uses two vectors for
propagation: exploitation of vulnerabilities on a target end host
and credential theft. The exploit payload is sent first. If the
exploit succeeds, the worm moves on to attacking the next
target in the list. If it fails, the worm uses credentials cached
on the local host to attempt to access the target remotely
and install itself. A credential with “Local Administrator”
privileges on the target must be cached on the source host for
this to succeed. After looping through all targets, the worm
waits three minutes before restarting. This proceeds over a
duration of 10-60 minutes (randomly chosen) before the worm
times out and stops propagating, as NotPetya does.

The goal of the threat is to spread to as many hosts as
possible before the propagation times out, with no targets
being more valuable than others. The target list is shuffled
randomly on each infected host. We assume control-plane
hosts are protected from reconnaissance by hosts in the SDN,
and are therefore beyond the scope of this threat.

Network Testbed. In this study, our testbed is modeled
after a small, operational enterprise network. It is built with
VMware vSphere and includes 86 Windows 10 VMs acting
as end hosts and 6 Windows server VMs supporting common
enterprise services (e.g., email, web proxy, file server). The
data plane includes 14 OpenFlow switches implemented on
CentOS 7 VMs with Open vSwitch 2.5.4, and 2 CentOS VMs
running the OpenFlow control plane (ONOS 1.13 controller
and DFI Proxy) and the DFI control-plane components. The
network topology is a star, with a single core switch and
13 enclave switches internally connected to it. Nine of the
enclaves support operational departments, with 9 hosts in each,
while the remaining enclaves host servers and an smaller
department with five hosts. One end host in each enclave
(10/86 total) is configured to be vulnerable to the worm
exploit, which falls within a typical range for patch compliance
by organizations as previously reported by Symantec [39]. In
addition, all servers are vulnerable in order to give them a
vector for transmitting the worm, since they are otherwise
defended against credential theft by configuration.

Users for the testbed end hosts are managed by an AD
server in the data plane. Each end host has one unique, primary
user, but other users in the same enclave (department) group
have “Local Administrator” privileges on the host. Servers in
the testbed have no primary users, and therefore no cached
credentials. Log-on and log-off events for users on their

0 10 20 30 40 50 60
Minutes After Initial Infection (09:00)

0

20

40

60

80

100

of
 In

fe
ct

ed
 H

os
ts

All Hosts in SDN

No Access Control
S-RBAC (enclaves)
DFI with AT-RBAC

(a) Infections from a self-propagating malware under different net-
work conditions.

0:00 2:00 4:00 6:00 8:00 10:00 12:00 14:00 16:00 18:00 20:00 22:00
Time of Initial Infection (HH:MM)

0

20

40

60

80

100

To
ta

l H
os

ts
 In

fe
ct

ed

All Hosts in SDN

(b) The impact of an infection using the AT-RBAC policy with DFI
are conditioned on time.

Fig. 5: Results of DFI-enabled Policy on Testbed Infections

primary host are simulated over the course of the day, each
being randomly assigned a unique time-series “script” that
establishes when the user is logged on or off. These scripts
were created by the authors based on a sample of their host
interactions during the day, and form an anecdotal scenario for
how the testbed network might be typically used. Each script
contains at least two hours of being logged on during the first
half of the work day (between 09:00-13:00). The randomized
script assignment is reused between conditions.

Conditions. We evaluate a scenario where one end host in
a departmental enclave becomes an infected foothold during
the course of a business day. Each end host in the testbed
simulated a unique authentication script that was randomly
chosen and fixed between test iterations. We evaluate how the
worm spreads when the foothold occurs at start of each hour
in the day, under three policy conditions:

First, we consider a baseline condition of a fully-connected
network with no access control. All traffic is allowed between
hosts in the SDN.

Second, we consider DFI with static, role-based network
access control (S-RBAC). In S-RBAC, access control is con-
figured statically, indefinitely letting a host communicate with
others within a logical enclave based on its role needs. In
our implementation of S-RBAC, we install rules that allow
incoming and outgoing flows for each host to: 1) all hosts in
its own enclave, and 2) each of the servers for operational
needs.

Finally, we consider a policy that is uniquely enabled
by DFI called authentication-triggered, role-based network
access control (AT-RBAC). In AT-RBAC, DFI enforces an
access control policy that is specific to the user logged onto
an end host. Role-based access for the user is allowed only
after she authenticates and access is revoked upon logging
off. When there is no user, flows are allowed only for a
small set of services needed to authenticate (i.e., DHCP,
DNS, AD). We expect AT-RBAC to slow the worm when not
all hosts have logged-on users, which is typical in realistic
networks. In DFI’s implementation of AT-RBAC, a sensor in
the SDN detects authentication events from users on end hosts

and sends them to the control plane. Seeing these events, a
Policy Decision Point created for this policy sends or revokes
commands (for log-on and log-off events, respectively) to/from
the Policy Manager that allow the host incoming and outgoing
flows for a role-based set, including: 1) all hosts in its own
enclave, and 2) each of the servers.

Results and Discussion. In summary, the AT-RBAC policy
uniquely enabled by DFI leads to fewer overall infections and
a slower infection rate compared to the other policies. Given
that the simulated user activity ensured morning activity on
all hosts, the scenario probably demonstrates a conservative
estimate of the benefit in a typical network. This slowdown
could provide additional time for an incident response team
to be notified and isolate infected hosts.

Results from the foothold starting at 09:00 represent how
the policies slow the threat at the start of a work day.
Figure 5a shows the first hour of the 09:00 infection for all test
conditions. In the baseline condition with no access control,
the first infection occurs after 1 second, and all end hosts
and servers are infected after 2 minutes. In S-RBAC, the first
infection does not occur until after 2.5 minutes. Initial attempts
by the foothold to reach other hosts fail because the first targets
exist in other logical enclaves, and are therefore denied by the
role-based policy. The infection progresses after a server is
infected and can transmit the worm to other enclaves, leading
to full network infection after 25 minutes. In AT-RBAC, the
first infection again takes 2.5 minutes due to the enclave
RBAC, as in the S-RBAC condition. However, infecting other
enclaves is slower than in S-RBAC: once a server is infected,
it can only succeed at reaching a target host if that host
has a logged-on user. As such, the worm’s targets become
“moving targets” whose reachability changes over time based
on end-host usage. It takes the worm 40 minutes to infect
83 of the 92 hosts, with the worm propagation stopping (i.e.,
ransomware “lock down”) before it infects all hosts. After
a post-hoc review, we determined that one enclave was not
infected because its vulnerable host was not logged into until
10:46 – after all other infections had timed out.

Figure 5b illustrates how AT-RBAC, which is conditioned

on log-on and log-off events, provides a greater benefit when
these events are sparse. In this scenario, the simulated log
activity dwindles outside of usual business hours, and a
foothold infected during this time cannot spread its infection
before the worm times out. This is in strong contrast with S-
RBAC or the baseline conditions, where infections initiated
at any hour follow the same course as the 09:00 foothold
demonstrated in Figure 5a, infecting of all hosts.

The scenario illustrates a benefit of access control ap-
proaches that make permissions dynamic over time, which
is what DFI is designed to support. Both S-RBAC and AT-
RBAC policies slow the rate of infection because it cannot
spread directly from an end host into another enclave besides
the servers. Yet, static policies like S-RBAC leave the network
more vulnerable than is necessary during times when hosts
can be effectively disconnected without impacting network
operations, e.g., outside work hours. These hours with no
users represent the best case for AT-RBAC – flow rules are
so restrictive that the foothold is isolated. In the worst case,
AT-RBAC is equivalent to S-RBAC when all hosts have users
logged on, but this is unlikely to last indefinitely in typical
enterprise networks where users log on and off regularly.

VI. RELATED WORK

As discussed in Section II, traditionally network access
control has been highly static, focused on curated lists of
firewall rules. Even approaches with a dynamic access-control
check, like IEEE 802.1x [1] and products like Cisco Network
Admission Control (NAC) [40] and Microsoft Network Access
Protection (NAP) [41], conduct a single check before allowing
coarse-grained access to the entire network. In contrast, DFI
provides dynamic, per-flow access control via policies that are
conditioned on network events, in place of static rules that may
be overly permissive at times.

Software Defined Perimeter (SDP) technologies [12], [42]–
[44] assume that most network assets are untrusted and thus
users should authenticate to every server for which they need
access. This is implemented at the application layer using
application proxies; however, the lower-layer network remains
static, with broad reachability. DFI differs by enforcing policy
at Layer 2, dynamically limiting reachability at a lower level.

Unlike traditional networks, SDNs are designed to be cen-
trally and programmatically controlled, providing an oppor-
tunity for improved access control techniques. Ethane [45]
enforces access control at the per-flow level and enables policy
specified with higher-level identifiers, as in DFI. However,
the policies it uses to create flow rules are essentially static
and do not adapt to events that might otherwise inform
policy decisions. Similarly, FLOWGUARD [46] is a framework
to detect and resolve conflicts in SDN firewall rules when
the network state changes, but the intended flow policy is
fundamentally static.

Precise Security Instrumentation (PSI) [47] leverages SDN
to steer traffic to middleboxes providing varying levels of
processing and inspection based on anomalous traffic features.
PSI is capable of implementing a variety of expressive policies,

much like DFI. However, it focuses on policies for traffic
inspection and routing, while DFI provides the ability to
dynamically adapt the network’s access control to ongoing
events. Additionally, PSI is controller-based, while DFI oper-
ates outside the controller to mitigate policy-bypass concerns.

PIVOTWALL [48] combines SDN with information-flow
control, enabling novel policies in the network. Using taint
tracking, an end-host agent tags administrator-labeled re-
sources as sensitive, and then alerts the SDN controller about
flows initiated by tainted processes. The controller maintains
a Network Information Flow Graph that is used to enforce
information-flow control policies. These end-host events rep-
resent possible policy events for DFI PDPs, but DFI is aimed at
a more general architecture and enables access control policy
enforcement separated from, and with priority over, controller
behavior.

Other efforts have investigated the security of SDN sys-
tems, or have leveraged the dynamism offered by SDNs
to implement new defenses. AVANT-GUARD [49] provides
access control mechanisms to disrupt control-plane saturation
attacks. TopoGuard [23] and SPHINX [24] study attacks on
the binding between an endpoint’s MAC address and network
location. SecureBinder [25] provides a solution to other attacks
on identifier bindings by leveraging SDN’s global view of the
network. Programmable BYOD Security [50] uses the SDN
for mobile-device access control. Security-Mode ONOS (SM-
ONOS) [51] builds a permission system for SDN applications
on top of ONOS. ConGuard [52] discovers Time of Check to
Time of Use (TOCTTOU) bugs in SDN controllers. Finally,
DELTA [53], NICE [54], and BEADS [55] provide frame-
works for automated testing of SDN systems.

VII. CONCLUSION

Existing network access-control approaches are highly static
and often coarse-grained. In this work, we have developed
DFI, a system that supports event-driven, fine-grained dynamic
access control policies using software-defined networking. DFI
is implemented for OpenFlow networks, and properly handles
consistency issues caused by frequent policy rule changes. At
the same time, it provides high-level policy specification by
resolving hostnames and usernames down to identifiers visible
in the network traffic. Additionally, DFI’s access control is
independent of the SDN controller and does not require using
a particular OpenFlow controller or trusting its integrity. We
evaluated DFI’s performance and show that DFI increases the
time-to-first-byte latency for data transiting an SDN by 17.8ms
under no load. This additional latency increases to 86.7ms
at 700 flows/sec when saturation begins. This could scale to
higher loads by running some control-plane components in
parallel. Additionally, we experimentally evaluated a threat
scenario using an authentication-triggered access control pol-
icy that is uniquely enabled by DFI, and found a decrease
in both the infection rate and total infected machines from a
NotPetya-like worm. These findings suggest that using DFI
to enforce event-driven access control policies can provide
improved network security over static approaches.

REFERENCES

[1] P. Congdon, B. Aboba, A. Smith, G. Zorn, and J. Roese, “IEEE 802.1 X
remote authentication dial in user service (RADIUS) usage guidelines,”
2003, RFC 3580.

[2] K. Sood and S. Hurley. (2017) NotPetya technical
analysis – a triple threat: File encryption, MFT
encryption, credential theft. CrowdStrike. [Online]. Available:
https://www.crowdstrike.com/blog/petrwrap-ransomware-technical-
analysis-triple-threat-file-encryption-mft/-encryption-credential-theft/

[3] A. Greenberg. (2018) The untold story of NotPetya, the most devastating
cyberattack in history. Wired. [Online]. Available: https://www.wired.
com/story/notpetya-cyberattack-ukraine-russia-code-crashed-the-world/

[4] S. Hurley and K. Sood. (2017) NotPetya technical analysis part ii:
Further findings and potential for MBR recovery. CrowdStrike. [On-
line]. Available: https://www.crowdstrike.com/blog/petrwrap-technical-
analysis-part-2-further-findings-and-potential-for-mbr-recovery/

[5] Risk Based Security. (2018) Equifax breach: A wrap-up. [Online].
Available: https://www.riskbasedsecurity.com/2017/10/equifax-breach-
a-wrap-up/

[6] Illusive Networks, “Attack Brief: Bangladesh Bank SWIFT
Attack,” Illusive Networks, Tech. Rep., 2016. [Online].
Available: http://cdn2.hubspot.net/hubfs/725085/Fact Sheets/2016-09-
ILL-1376--w-Attackerbrief-BangladeshSWIFT.pdf

[7] R. Altamini, N. Arora, and A. Kadi. (2015) Anthem Hack. Anthem.
[Online]. Available: https://www.cs.bu.edu/∼goldbe/teaching/HW55815/
presos/anthem.pdf

[8] A. Jeng, “Minimizing damage from JP Morgan’s data breach,” SANS
Institute, Tech. Rep., 2015.

[9] K. Jarvis and J. Milletary, “Inside a targeted point-of-sale data breach,”
Dell SecureWorks Counter Threat Unit, Tech. Rep., 2014.

[10] Trend Micro, “Countering the advanced persistent threat challenge with
deep discovery,” Trend Micro, Tech. Rep. 10, 2013.

[11] SophosLabs. (2018) SophosLabs 2018 malware forecast. Sophos.
[Online]. Available: https://media.scmagazine.com/documents/321/
sophos 2018 malware forecast, 80124.pdf

[12] R. Ward and B. Beyer, “BeyondCorp: A new approach to enterprise
security,” login, vol. 39, pp. 5–11, 2014.

[13] “Cve-2009-1925,” ”Available from MITRE, CVE-ID CVE-2009-
1925.”, 2015. [Online]. Available: http://cve.mitre.org/cgi-bin/cvename.
cgi?name=cve-2009-1925

[14] “Project Floodlight.” [Online]. Available: http://www.projectfloodlight.
org/floodlight/

[15] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide,
B. Lantz, B. O’Connor, P. Radoslavov, W. Snow et al., “ONOS: towards
an open, distributed SDN OS,” in Proceedings of the third workshop on
Hot topics in software defined networking. ACM, 2014, pp. 1–6.

[16] J. Medved, R. Varga, A. Tkacik, and K. Gray, “OpenDaylight: Towards a
model-driven SDN controller architecture,” in International Symposium
on ”A World of Wireless, Mobile and Multimedia Networks” (WoW-
MoM), June 2014, pp. 1–6.

[17] J. Amann and R. Sommer, “Providing dynamic control to passive
network security monitoring,” in International Workshop on Recent
Advances in Intrusion Detection (RAID). Springer, 2015, pp. 133–152.

[18] H. Kim, J. Reich, A. Gupta, M. Shahbaz, N. Feamster, and R. J. Clark,
“Kinetic: Verifiable dynamic network control.” in NSDI, 2015, pp. 59–
72.

[19] Dell, Inc. (2015) Dell openflow deployment and user guide 3.0.
[Online]. Available: http://topics-cdn.dell.com/pdf/force10-sw-defined-
ntw Deployment%20Guide3 en-us.pdf

[20] Shamus McGillicuddy. Pica8 doubles flow rule capac-
ity in its new OpenFlow 1.3 switch. [Online]. Avail-
able: http://searchsdn.techtarget.com/news/2240214709/Pica8-doubles-
flow-rule-capacity-in-its-new-OpenFlow-13-switch

[21] Centec Networks. (2017) Centec networks - SDN/OpenFlow
switch - v330. [Online]. Available: http://www.centecnetworks.com/en/
SolutionList.asp?ID=42

[22] Hewlett-Packard Development Company, L.P. (2015) HP switch
software OpenFlow v1.3 administrator guide K/KA/WB 15.17. [Online].
Available: http://h20566.www2.hpe.com/hpsc/doc/public/display?sp4ts.
oid=5354494&docLocale=en US&docId=emr na-c04656675

[23] S. Hong, L. Xu, H. Wang, and G. Gu, “Poisoning network visibility in
software-defined networks: New attacks and countermeasures.” in NDSS,
2015.

[24] M. Dhawan, R. Poddar, K. Mahajan, and V. Mann, “SPHINX: Detecting
security attacks in software-defined networks,” in NDSS, 2015.

[25] S. Jero, W. Koch, R. Skowyra, H. Okhravi, C. Nita-Rotaru, and
D. Bigelow, “Identifier binding attacks and defenses in software-defined
networks,” in 26th USENIX Security Symposium (USENIX Security 17).
USENIX Association, 2017, pp. 415–432.

[26] B. E. Ujcich, S. Jero, A. Edmundson, Q. Wang, R. Skowyra, J. Landry,
A. Bates, W. H. Sanders, C. Nita-Rotaru, and H. Okhravi, “Cross-app
poisoning in software-defined networking,” in Conference on Computer
and Communications Security (CCS18), 2018, pp. 648–663.

[27] B. Yan, Y. Xu, and H. J. Chao, “Adaptive wildcard rule cache man-
agement for software-defined networks,” IEEE/ACM Transactions on
Networking, vol. 26, no. 2, pp. 962–975, April 2018.

[28] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey, “VeriFlow:
Verifying network-wide invariants in real time,” in NSDI. USENIX,
2013.

[29] R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado, N. McK-
eown, and G. M. Parulkar, “Can the production network be the testbed?”
in 9th USENIX Symposium on Operating Systems Design and Implemen-
tation(OSDI), 2010, pp. 365–378.

[30] P. Kazemian, M. Chan, H. Zeng, G. Varghese, N. McKeown, and
S. Whyte, “Real time network policy checking using header space
analysis,” in NSDI, 2013, pp. 1–13.

[31] R. Durairajan, J. Sommers, and P. Barford, “Controller-Agnostic SDN
Debugging,” in CoNEXT, 2014.

[32] X. Jin, J. Gossels, J. Rexford, and D. Walker, “CoVisor: A Compo-
sitional Hypervisor for Software-Defined Networks,” in Proceedings
of the 12th USENIX Symposium on Networked Systems Design and
Implementation (NSDI), 2015, pp. 87–101.

[33] G. Developers. (2018) Protocol buffers version 3 language specification.
Google. [Online]. Available: https://developers.google.com/protocol-
buffers/docs/reference/proto3-spec

[34] Mininet Project, “cbench,” GitHub repository, 2013. [Online]. Available:
https://github.com/mininet/oflops/tree/master/cbench

[35] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney, “A
first look at modern enterprise traffic,” in Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement. USENIX Association,
2005, pp. 2–2.

[36] H. Wang, G. Yang, P. Chinprutthiwong, L. Xu, Y. Zhang, and G. Gu,
“Towards fine-grained network security forensics and diagnosis in the
sdn era,” in Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 2018, pp. 3–16.

[37] Carbon Black research team. (2017) Technical analysis:
Petya/NotPetya-ransomware. Carbon Black. [Online]. Avail-
able: https://www.carbonblack.com/2017/06/28/carbon-black-threat-
research-technical-analysis-petya-notpetya-ransomware/

[38] J. Gajek. (2017) A closer look at Petya’s/NotPetya’s network spreading
code. eSentire. [Online]. Available: https://www.esentire.com/blog/a-
closer-look-at-petyasnotpetyas-network-spreading-code/

[39] Symantec. (2010) Patch management best practices. Symantec. [Online].
Available: https://support.symantec.com/en US/article.HOWTO3124.
html

[40] BigFix Client Compliance, “Cisco NAC,” BigFix, Inc., Apr, vol. 25,
2005.

[41] (2005) Microsoft network access protection (NAP). Microsoft. [Online].
Available: http://www.microsoft.com/windowsserver2003/technologies/
networking/nap/default.mspx

[42] “Software defined perimeter,” Cloud Security Alliance, Tech. Rep.,
December 2013.

[43] W. Labs, “Software defined perimeter (SDP) implementation,” 2017.
[Online]. Available: http://www.waverleylabs.com/services/software-
defined-perimeter/

[44] I. Vidder, “Software defined perimeter,” 2017. [Online]. Available:
https://www.vidder.com/software-defined-perimeter/

[45] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and
S. Shenker, “Ethane: Taking control of the enterprise,” in Proceedings of
the 2007 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications, ser. SIGCOMM ’07. ACM,
2007, pp. 1–12.

[46] H. Hu, W. Han, G.-J. Ahn, and Z. Zhao, “FLOWGUARD: Building
robust firewalls for software-defined networks,” in Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, ser.
HotSDN ’14. ACM, 2014, pp. 97–102.

[47] T. Yu, S. K. Fayaz, M. Collins, V. Sekar, and S. Seshan, “PSI: Precise
security instrumentation for enterprise networks,” in Proc. NDSS, 2017.

[48] T. OConnor, W. Enck, W. M. Petullo, and A. Verma, “Pivotwall: SDN-
based information flow control,” in Proceedings of the Symposium on
SDN Research. ACM, 2018, p. 3.

[49] S. Shin, V. Yegneswaran, P. Porras, and G. Gu, “AVANT-GUARD:
Scalable and vigilant switch flow management in software-defined
networks,” in Proceedings of the ACM CCS, ser. CCS ’13. ACM,
2013, pp. 413–424.

[50] S. Hong, R. Baykov, L. Xu, S. Nadimpalli, and G. Gu, “Towards
SDN-defined programmable BYOD (bring your own device) security,”
NDSS’16, 2016.

[51] C. Yoon, S. Shin, P. Porras, V. Yegneswaran, H. Kang, M. Fong,
B. O’Connor, and T. Vachuska, “A security-mode for carrier-grade
SDN controllers,” in Proceedings of the 33rd Annual Computer Security
Applications Conference. ACM, 2017, pp. 461–473.

[52] L. Xu, J. Huang, S. Hong, J. Zhang, and G. Gu, “Attacking the brain:
Races in the SDN control plane,” in 26th USENIX Security Symposium
(USENIX Security 17). USENIX Association, 2017, pp. 451–468.

[53] S. Lee, C. Yoon, C. Lee, S. Shin, V. Yegneswaran, and P. Porras,
“DELTA: A security assessment framework for software-defined net-
works,” in Proceedings of NDSS, vol. 17, 2017.

[54] M. Canini, D. Venzano, P. Peresini, D. Kostic, J. Rexford et al., “A
NICE way to test openflow applications.” in NSDI, vol. 12, no. 2012,
2012, pp. 127–140.

[55] S. Jero, X. Bu, C. Nita-Rotaru, H. Okhravi, R. Skowyra, and S. Fahmy,
“BEADS: Automated attack discovery in OpenFlow-based SDN sys-
tems,” in Proc. of RAID’17, 2017.

