
Attack Class Impact

On-path Repeated Slow Start Increased Throughput

Amplified Bursts Increased Throughput

Ack Lost Data Connection Stall

Slow Injected Acks Decreased Throughput

Sawtooth Ack Decreased Throughput

Dup Ack Injection Decreased Throughput

Ack Amplification Increased Throughput

Off-path Repeated Slow Start Increased Throughput

Automated Attack Discovery in TCP Congestion Control
Using a Model-guided Approach

Samuel Jero1, Endadul Hoque2, David Choffnes3, Alan Mislove3 , and Cristina Nita-Rotaru3

1Purdue University, 2Florida International University, and 3Northeastern University
Appeared in NDSS 2018

Acknowledgements and Contact Info

This material is also based upon work partially supported by the National Science Foundation under Grant Numbers CNS-1600266, CNS-1617728, and CNS- 1409191. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

For more information about this project, contact: Samuel Jero <sjero@sjero.net>. Or see our paper in NDSS 2018.

TCP Congestion Control Attacks
Congestion Control
• Prevents Congestion Collapse
• Ensures fairness between

flows

Model-based Attack Discovery

Evaluation

Long history of powerful attacks

Th
ro

u
gh

p
u

t

Time

Loss
Loss

Impacts include
• Decreased Throughput
• Increased Throughput,

starving other flows
• Connection Stalls 1995 2000 2005 2010 2015

1) Model Congestion Control as
a State Machine

2) Create Abstract Strategies from
State Machine

3) Create Concrete Strategies from
Abstract Strategies

4)Apply Concrete Strategies
to Real Implementations

Ack
--
cwnd+=1

Slow
Start

Exponential
Backoff

Congestion
Avoidance

Fast
Recovery

TimeoutTimeout

Ti
m

eo
u

t

3 Duplicate Acks
--
cwnd = cwnd/2

New Ack
--
cwnd+=MSS

Ack
--
cwnd=0

New Ack
--
cwnd+=1

3 Duplicate Acks
--
cwnd = cwnd/2

Implementation Date

Ubuntu 16.10 (Linux 4.8) 2016

Ubuntu 14.04 (Linux 3.13) 2014

Ubuntu 11.10 (Linux 3.0) 2011

Debian 2 (Linux 2.0) 1998

Windows 8.1 2014

1

32

5

4
cwnd+=1

Enumerate all paths that contain
cycles and change cwnd

1 2 3

Mapping
(from transitions to actions)

State 1:
Duplicate ACKs

State 2:
Limit ACKS

State 3:
Optimistic ACKs

Any Attack MUST:
• Change cwnd
• Cause a Cycle

Attack
Injector

State
Tracker

Client 1

Client 2

System
Under

Test

Server 2

Target Flow

Background Flow

Evaluated 5 TCP implementations

Why so many attacks?

• Hundreds of implementations
and variations

• Lack of unified specifications
• Complex, highly dynamic

behavior

Can we automatically test
implementations for attacks?

Measure throughput and fairness to identify attacks

Found 11 classes of attacks, 8 of which are new

Key Challenge: Scalability, attacks
are complex, multi-stage and the
system is highly dynamic

New Attacks

