
Attack Class Impact

On-path Repeated Slow Start Increased Throughput

Amplified Bursts Increased Throughput

Ack Lost Data Connection Stall

Slow Injected Acks Decreased Throughput

Sawtooth Ack Decreased Throughput

Dup Ack Injection Decreased Throughput

Ack Amplification Increased Throughput

Off-path Repeated Slow Start Increased Throughput
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TCP Congestion Control Attacks
Congestion Control
• Prevents Congestion Collapse
• Ensures fairness between 

flows

Model-based Attack Discovery

Evaluation

Long history of powerful attacks
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Impacts include
• Decreased Throughput
• Increased Throughput, 

starving other flows
• Connection Stalls 1995 2000 2005 2010 2015

1) Model Congestion Control as 
a State Machine

2) Create Abstract Strategies from 
State Machine

3) Create Concrete Strategies from 
Abstract Strategies

4)Apply Concrete Strategies 
to Real Implementations
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3 Duplicate Acks
--
cwnd = cwnd/2

New Ack
--
cwnd+=MSS

Ack
--
cwnd=0

New Ack
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cwnd+=1

3 Duplicate Acks
--
cwnd = cwnd/2

Implementation Date

Ubuntu 16.10 (Linux 4.8) 2016

Ubuntu 14.04 (Linux 3.13) 2014

Ubuntu 11.10 (Linux 3.0) 2011

Debian 2          (Linux 2.0) 1998

Windows 8.1 2014
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Enumerate all paths that contain 
cycles and change cwnd

1 2 3

Mapping
(from transitions to actions)

State 1:
Duplicate ACKs

State 2:
Limit ACKS

State 3:
Optimistic ACKs

Any Attack MUST:
• Change cwnd
• Cause a Cycle
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Evaluated 5 TCP implementations

Why so many attacks?

• Hundreds of implementations 
and variations

• Lack of unified specifications
• Complex, highly dynamic 

behavior

Can we automatically test 
implementations for attacks?

Measure throughput and fairness to identify attacks

Found 11 classes of attacks, 8 of which are new

Key Challenge: Scalability, attacks 
are complex, multi-stage and the 
system is highly dynamic

New Attacks


