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Abstract
In this work, we demonstrate a novel attack in SDN

networks, Persona Hijacking, that breaks the bindings of
all layers of the networking stack and fools the network
infrastructure into believing that the attacker is the le-
gitimate owner of the victim’s identifiers, which signifi-
cantly increases persistence. We then present a defense,
SECUREBINDER, that prevents identifier binding attacks
at all layers of the network by leveraging SDN’s data and
control plane separation, global network view, and pro-
grammatic control of the network, while building upon
IEEE 802.1x as a root of trust. To evaluate its effective-
ness we both implement it in a testbed and use model
checking to verify the guarantees it provides.

1 Introduction

Modern networks use various identifiers to specify en-
tities at network stack layers. These identifiers include
addresses, like IP addresses or MAC addresses, and do-
main names, as well as less explicitly known values such
as the switch identifier and the physical switch port to
which a machine is connected. Identifiers are used in
modern networks not only to establish traffic flow and
deliver packets, but also to enforce security policies such
as in firewalls or network access control systems [3]. In
order to achieve proper operation and security guaran-
tees, network infrastructure devices (e.g., switches, net-
work servers, and SDN controllers) implicitly or explic-
itly associate various identifiers of the same entity with
each other in a process we call identifier binding. For ex-
ample, when a host acquires an IP address from a DHCP
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server, the server binds that IP address to the host’s MAC
address; when an ARP reply is sent in response to an
ARP request, the source host binds the IP address in the
ARP request to the MAC address in the ARP reply.

Given the importance of these identifier bindings, it is
not surprising that numerous attacks against them have
been developed, including DNS spoofing [48], ARP poi-
soning [29], DHCP forgery, and host location hijack-
ing [24]. These attacks are facilitated by several net-
work design characteristics: (1) reliance on insecure
protocols that use techniques such as broadcast for re-
quests and responses without any authentication mech-
anisms, (2) allowing binding changes without consider-
ing the network-wide impact of services relying on them,
(3) allowing independent bindings across different lay-
ers without any attempt to check consistency, and (4) al-
lowing high-level changes to identifiers that are designed
and assumed to be unique. Numerous defenses have also
been proposed to prevent identifier binding attacks of
various types in traditional networks [18, 48, 2].

Software-Defined Networking (SDN) is a new net-
working paradigm that facilitates network management
and administration by providing an interface to con-
trol network infrastructure devices (e.g., switches). In
this paradigm, the system responsible for making traf-
fic path decisions (the control plane) is separated from
the switches responsible for delivering the traffic to the
destination (the data plane). The SDN controller is the
centralized system that manages the switches, installs
forwarding rules, and presents an abstract view of the
network to SDN applications. SDN provides flexibility,
manageability, and programmability for network admin-
istrators. Although previous work has focused on var-
ious aspects of the intersection of security and SDNs
[46, 27, 28, 45, 26, 36, 44, 5, 14, 52], there has been lit-
tle work on studying identifier binding attacks and their
implications in SDN systems.

In this paper, we first study identifier binding attacks
in SDN systems. We show that the centralized control



exacerbates the implications and consequences of weak
identifier binding. This allows malicious hosts to poi-
son identifier bindings not only in their own broadcast
domain, as is the case with many identifier binding at-
tacks in traditional networks, but also in the entire SDN
network. Moreover, we show that, unlike traditional net-
works where identifier binding attacks are limited to a
small subset of identifiers, in SDN, identifier binding at-
tacks can be so severe that they allow complete takeover
of all network identifiers of the victim host at once, in
an attack we dub Persona Hijacking. More damagingly,
in a Persona Hijacking attack the malicious host fools the
network infrastructure devices into believing that it is the
legitimate owner of the victim’s identifiers, allowing it to
persistently hold the compromised identifiers. Our at-
tack succeeds even in the presence of the latest secure
SDN solutions such as TopoGuard [24], SPHINX [14],
and SE-Floodlight [45].

We then show how the SDN design philosophies of
programmable infrastructure, separation of control and
data planes, and centralized control can be used to pre-
vent identifier binding attacks. We design and implement
a defense, SECUREBINDER, to establish strong bindings
between various network identifiers. First, we extend the
802.1x protocol to establish a root-of-trust for strong au-
thentication of a machine. Building on this root-of-trust,
we then implement additional components of the defense
to strongly bind higher-level identifiers to the MAC ad-
dress. As part of SECUREBINDER, we force all identifier
binding broadcast traffic to go through the control plane
and program switches to drop all data plane broadcasts,
preventing the hijacking of higher-level identifiers (IP or
domain name) bound to a given MAC address. Our solu-
tion does not require any changes on the end-hosts.

We extensively evaluate the effectiveness of our de-
fense experimentally, using testbed implementations of
various identifier binding attacks, as well as formally, us-
ing model checking. Our experimental and formal eval-
uations indicate that SECUREBINDER can successfully
stop identifier binding attacks while incurring a small
overhead, mainly in the form of additional network join
latency due to the initial authentication step.

Roadmap. In section 2, we discuss the key bindings
in a modern network stack. In section 3 we describe the
Persona Hijacking attack. We present our defense in sec-
tion 4, then evaluate it formally and experimentally in
section 5. We discuss limitations of our attack and de-
fense in section 6 and then consider related work in sec-
tion 7 before concluding in section 8.

2 Identifier Binding

In this section we provide an overview of the main iden-
tifiers used at different network layers and discuss iden-
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Figure 1: Network Identifier Bindings. Protocols
mediating the binding for IPv4 are shown at bottom.

tifier binding attacks in traditional networks and what
makes these attacks more dangerous in SDN networks.

2.1 Overview of Identifier Bindings

Network protocols rely on identifier binding in order to
operate correctly and efficiently. Because of the stack
model where layers can access services only from adja-
cent layers, identifier binding takes place in two forms,
explicit – achieved through network protocols or man-
ual configuration, and implicit – achieved through al-
ready existing mappings. Below we describe the iden-
tifier bindings that are critical to correct functioning of a
network (see Fig. 1). For additional background on the
identifiers discussed here, please see Appendix A.
Network location to device: In traditional networks, a
device’s network location is represented implicitly by the
switch and port that packet forwarding rules are bound
to and the location of ACL rules or other configuration
specific to that device.
MAC address to network location: Binding MAC ad-
dresses to network locations is done implicitly based on
observed network traffic by Layer-2 switches; the source
MAC address of traffic is used to learn which network
port on a switch corresponds to that MAC address.
IP address to MAC address: Mapping a unicast IP ad-
dress to a MAC address is usually done via ARP for IPv4
and NDP for IPv6. These mechanisms broadcast a query
asking who has a given IP address and the device with
that IP address unicasts a response including its MAC
address. An interface with a single MAC address may
have more than one IP address associated with it.
Host names to IP addresses and IP addresses to host-
names: Hostnames are mapped to IP addresses in several
ways. The most common is unicast, centrally configured
DNS. However, multicast DNS (mDNS) without a cen-
tral server also exists, as does a legacy naming service for
Microsoft Windows known as NETBIOS. Note that DNS
and mDNS can also be used for reverse resolution: find-
ing a hostname given an IP address. A single IP address
may be associated with multiple hostnames and a single
hostname may be associated with multiple IP addresses.



In unicast DNS, the hostname to IP bindings are ei-
ther manually configured by an administrator or automat-
ically updated using the DNS update command. The pro-
tocol for automatically updating hostnames is Dynamic
DNS [51] and lacks authentication. A secure version [53]
exists, but is rarely used. Microsoft Active Directory
has its own scheme to authenticate DNS updates to AD-
integrated DNS servers while other directory services
have the DHCP server update the DNS records for clients
when they acquire IP addresses [19]. To map a hostname
to an IP address, unicast DNS uses UDP (although TCP
can also be used) to send a request to the DNS server.
Responses are returned in the same way and contain no
authentication. DNSSEC [2] cryptographically authenti-
cates DNS responses, preventing modification or forgery,
but is rarely deployed. Both Multicast DNS (mDNS) and
NETBIOS rely on unauthenticated broadcast requests.
Hosts listen for these requests and respond if they have
the queried hostname. NETBIOS can use a registration
server to speed up this process.
Username to hostname: This binding occurs either as
per-system user accounts or via a directory service, of
which Active Directory is the most prominent.

Active Directory (and its open-source counterpart
Samba) is a directory service that maintains information
on users, groups, access rights, and configuration infor-
mation for an organization and uses this information for
centralized authentication and management. It leverages
LDAP for directory access and Kerberos for authentica-
tion. It authenticates both users and machines to the net-
work and provides configuration management to Win-
dows clients. Unfortunately, Active Directory machine
authentication does not provide authentication of lower
level network identifiers like MAC or IP addresses. Au-
thentication is based on Kerberos, but Active Directory-
issued tickets are bound only to the hostname and not to
the IP address by default [17].

Directory services like Active Directory do not know
precisely who is logged in at any given point in time.
Further, a connection to the network might not trigger
authentication. For example, if a user is already logged
in when they connect to the network, the connection does
not trigger authentication. For per-system user accounts,
the authentication and management is local to each sys-
tem and not visible to the network. Higher level proto-
cols, like NFS, may still rely on this information.

2.2 Binding Attacks in non-SDN Networks

The ultimate goal of layer-to-layer bindings is to allow a
mapping across the entire stack where higher level iden-
tifiers are mapped by transitivity to lower layers and, ul-
timately, to device identifiers.

Definition 1 (Identifier binding attack): We define an
identifier binding attack as 1) replacing or creating a
binding such that the identifiers bound together are as-
sociated with different devices, or 2) utilizing identifiers
associated with a known, offline device in a binding.

There are several design factors and architectural char-
acteristics that facilitate identifier binding attacks:

(1) Reliance on insecure protocols: Many of these
bindings are constructed based on broadcast requests
that query the entire broadcast domain while others are
formed implicitly based on spoof-able identifiers in ob-
served traffic. Thus, an attacker can easily impact these
bindings simply by sending spoofed packets or listening
for broadcast queries and responding.

(2) Treating binding creation and changes as the same
operation: Once a binding is created, there are services
that rely on it. Changing a binding, for example, because
of a host migration or IP address reassignment, has impli-
cations on all services that rely on it network-wide. Not
distinguishing between creation and changes to a bind-
ing allows an attacker to reset existing bindings simply
by claiming to have an identifier.

(3) Independent changes: Many bindings are treated
independently from each other with no attempts to use
information recorded in one binding, for example the
MAC to network location binding, to validate updates
being made to others, like the IP address to MAC address
binding. This enables attackers to use packets that violate
one binding to successfully attack a different binding.

(4) Ability to change identifiers: Identifiers that are as-
sumed to be unique, like MAC addresses, are actually
mutable and easily changed in software. Hence, attack-
ers can readily impersonate other devices to the network.

These characteristics enable a wide variety of attacks
on identifier binding protocols, including ARP spoofing,
DNS spoofing, and Rogue DHCP servers. ARP spoof-
ing is enabled by the broadcast mechanism employed by
ARP to bind IP addresses to MAC addresses as well as
by bindings at different layers not being used to validate
each other. In a similar manner, Rogue DHCP servers are
enabled by the broadcast nature of DHCP that allows any
host to listen for and respond to requests. DNS spoofing
is possible because bindings are treated independently,
allowing a host to use spoofed packets to send DNS re-
sponses as if they came from the legitimate DNS server.

Limitations of identifier binding attacks in tradi-
tional networks: Identifier management in IPv4 Ether-
nets must contend with several architectural aspects of
the network stack that impact the scope, consistency, and
security of identifier bindings between different network
identifiers.

(1) Distributed Control State: Traditional networks
maintain distributed control state in both network in-
frastructure (e.g., switches and routers) as well as ded-



icated identifier management servers such as DHCP and
DNS. This ensures that network layer boundaries define
the scope of the relevant identifier bindings. Layer-2
switches form broadcast domains over which packets are
forwarded based on MAC–Port bindings maintained by
each device. Outside of these layer boundaries, Layer-2
identifiers are overwritten by routers and forwarding is
based on Layer-3 IP addresses. This effectively limits
the scope of Layer-2 attacks like ARP or MAC spoofing
only to that broadcast domain, as all other regions of the
network are only reachable via Layer-3 routing.

(2) Intelligent Routers: Modern switches and routers
have defenses to mitigate attacks on identifier bindings.
These include techniques such as Cisco’s Dynamic ARP
Inspection and DHCP Snooping systems, which main-
tain local databases of identifier bindings and can drop
packets based on coarse-grained heuristics and manually
configured trust relationships [10]. Network interfaces
which are not registered as DHCP servers, can be set to
drop server-side DHCP messages such as lease offers.

(3) Rapid Rule Consistency: Modern IPv4 Ethernets
rely on interior gateway protocols (e.g., OSPF) to build a
network information base (NIB) at every router. The NIB
is used to install routing rules, which are updated when-
ever the NIB state changes. Since this update is local to
the router, there is very little delay between a NIB update
and a routing rule change to make forwarding behavior
consistent with the NIB. This limits the ability of an at-
tacker to cause blackhole or redirection attacks based on
stale routing rules (though attacks on the routing protocol
itself remain possible).

2.3 Binding Attacks in SDN Networks

While identifier management in SDNs uses largely the
same protocols as those used by IPv4 Ethernets, the ar-
chitecture of an SDN imposes different challenges to
maintaining the security of identifier bindings. SDNs dif-
fer from traditional networks in three key aspects that can
be used to amplify the impact of existing identifier bind-
ing attacks: a unified control plane, bare-metal switches,
and delayed rule consistency.
Unified Control Plane: OpenFlow networks are divided
into a separate data plane (the switches) and control
plane (the controller). This unifies the entire network
under a single SDN controller (or communicating set of
controllers) and removes most traditional divisions of a
network into broadcast domains and subnets. Protocol
data structures which would normally be maintained per-
switch or per-router are maintained only at the controller,
and messages which would normally not leave the lo-
cal switch/router are instead sent to the controller. Many
controllers implement Proxy ARP, for example, in which
a single master ARP table is maintained for the entire

network. ARP Requests are sent to the controller, which
generates an ARP Reply via a packet out. Attackers
can use this to their advantage. Any ARP Spoofing attack
can now target any victim on the entire SDN, whereas
a traditional network requires the attacker and victim to
share a broadcast domain.
Bare-Metal Switches: OpenFlow switches have no in-
ternal packet-processing logic beyond the flow rules in-
stalled by a controller. Thus, defenses that have tra-
ditionally been implemented by network infrastructure
(such as Dynamic ARP inspection and DHCP Snooping
[10]) are not present in SDNs. Additionally, no open
source SDN controller currently provides any Layer-2 or
Layer-3 security systems beyond user-configurable fire-
wall rules. As a result, attacks which are easily detected
in traditional networks (such as Rogue DHCP servers) go
unnoticed in vanilla OpenFlow networks.
Delayed Rule Consistency: SDN controllers imple-
ment a global NIB in order to determine what flow
rules to install in response to a packet in event. Ap-
proaches to populating it have a common component.
During packet in processing, the source IP and MAC
addresses are used to update the NIB with the switch
and port on which an end-host is located. Destination
IP and MAC addresses are looked up in the NIB to de-
termine the switch port on which the packet should be
forwarded. A flow rule is then synchronously installed
in the relevant switch(es) with match fields determined
by the current NIB state before the packet is sent back
to the switch for forwarding. Unfortunately, when the
NIB state is updated, old flow rules are not removed from
switches (probably because attempting to differentially
update all flow rules on NIB updates would dramatically
increase flow latency). A common work-around (used
by Ryu and POX) is to set a hard or soft timeout on flow
rules. Soft timeouts count down from the last time the
rule was triggered, while hard timeouts count down from
rule installation. When a timeout is reached, the rule is
deleted. This bounds the duration that inconsistent rules
can persist, but does not solve the problem on shorter
timescales. Attackers can take advantage of temporarily
inconsistent flow rules to intercept messages meant for
another host or blackhole traffic.

We have observed the lack of traditional ARP poison-
ing/DHCP snooping defenses and the presence of de-
layed rule consistency experimentally in ONOS and Ryu
and confirmed both in the Floodlight and POX source
code. We leave a complete exploration of additional con-
trollers to future work.

3 Persona Hijacking

We present an attack against identifier bindings in SDNs
that allows complete takeover of all network identifiers



Table 1: Impact of Identifier Binding Attacks

Attack
Spoofed ID

Persistence Area Affected Legitimized
Defenses

MAC IP Hostname Non-SDN SDN
ARP Spoofing X X – Minutes Broadcast Domain – X –
Rogue DHCP – X X Days Subnet – X –
DNS Spoofing – X X Minutes DNS Domain X X X
Persona Hijacking X X X Days Entire Network X – –

of the victim host at once, an attack we dub Persona Hi-
jacking. We first describe the attacker capabilities re-
quired by the attack, then describe the Persona Hijack-
ing attack in detail.

3.1 Attacker Model
We consider an enterprise IPv4 Ethernet network using
the Openflow SDN architecture and a standard Open-
Flow controller such as Ryu, POX, NOX, Floodlight,
OpenDaylight, ONOS, or Beacon. End-hosts use ARP
to look up the MAC address associated with an IP and
use DHCP to obtain IP addresses from a single DHCP
server. Additionally, the network has an internal DNS
server for managing intranet hostnames and a directory
services package such as Microsoft Active Directory.

We assume the attacker has compromised one or more
end-hosts on this network and is attempting to use those
hosts to impersonate a target server to clients in order
to subvert additional end-hosts and move laterally in the
network. OpenFlow switches and the controller are out-
side of adversarial control and act as trusted infrastruc-
ture. Thus, the attacker cannot perform a man-in-the-
middle attack without corrupting network routing state
or stealing the identifiers (e.g., IP address) of the victim
end-host.

We assume that the attacker has not compromised any
of the critical servers (such as directory services, DNS,
or DHCP). This is because the attacker would have more
powerful options than the attack presented here, if such
servers have been compromised.

3.2 Persona Hijacking Attacks
While several attacks against identifier bindings exist,
their impact is limited in traditional networks. They im-
pact only a single binding, persist briefly, have a limited
area of effect, and many defensive solutions exist. We
summarize the characteristics of the most common at-
tacks on identifier bindings in Table 1. ARP Spoofing,
for example, corrupts a MAC–IP binding within a Layer
2 broadcast domain until the ARP cache entry times out,
at which point the attack must be re-launched.

These limitations do not hold for SDNs, which per-
mit powerful new attacks on identifier bindings. We in-
troduce one such attack, Persona Hijacking, which al-

lows complete takeover of all network identifiers of the
victim host at once, can persist for days, affects the en-
tire network, and has no existing defenses. Specifically,
our Persona Hijacking attack allows an attacker in an
SDN-based network to take over an IP address and DNS
domain name from a victim end-host by progressively
breaking the MAC Address to Network Location, IP Ad-
dress to MAC address, and (in some network configura-
tions) Hostname to IP Address bindings.

A key feature of our attack, which is unachievable
using traditional identifier binding attacks (e.g., ARP
spoofing), is that it affects the network infrastructure
such that the attacker becomes the owner of record for
the IP address. That is, the DHCP server believes that
the victim’s IP is bound to the attacker’s MAC address.
This allows Persona Hijacking attacks to effectively co-
opt the DHCP server and propagate the deception further
into the network.

Persona Hijacking consists of two main phases. The
first phase, which we refer to as IP takeover, relies on a
client-side attack against DHCP to break the IP address
to MAC address and hostname to IP address bindings in
order to hijack the IP address and hostname of the victim
by binding both of them to the attacker’s MAC address.
The second phase, which we refer to as Flow Poison-
ing, exploits the delayed flow rule consistency present in
SDNs to break (from the perspective of the victim) the
MAC address to network location binding of the DHCP
server in order to (from the perspective of the DHCP
server) legitimize the first phase and make the victim ap-
pear to have willingly given up its IP address. A timeline
of the complete attack is shown in Figure 2.

IP takeover Details. IP takeover operates in two
steps. First, the attacker breaks the binding between
the victim’s IP address and MAC address by forging a
DHCP RELEASE message to make the DHCP server re-
lease the victim’s IP address into the pool of available
addresses. This does not break the hostname to IP ad-
dress binding, as the recommended practice in an enter-
prise setting is for the client to manage DNS A record
updates [33]. The next step is to bind the released IP
address to the attacker’s MAC address. However, the
DHCP specification [15] recommends that the DHCP
server should offer addresses from their unused pool
before offering addresses that were recently released.
Hence, the attacker mounts a partial (and temporary)
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Figure 2: Timeline of the Persona Hijacking attack.

DHCP starvation attack. The DHCP server is flooded
with DHCP DISCOVER messages using random MAC
addresses, until the target’s IP address is offered. Once
the DHCP server offers the victim’s IP, the attacker con-
firms the lease, and the starvation attack is halted. The
victim’s IP address and hostname are now bound to the
attacker’s MAC address by the DHCP server.

Note that the DHCP DISCOVER is the first half of the
DHCP handshake. An additional confirmation from the
client is required to finalize the lease, and most DHCP
servers will avoid offering such addresses to other clients
for a few minutes. This limits the exposure of the exhaus-
tion attack and its impact on legitimate clients to a short
time window. Furthermore in networks with high DHCP
churn, an attacker can perform strategically timed and
limited DHCP starvation to avoid detection by allowing
new clients to consume the IP addresses in the unused
pool.

IP takeover Impact: SDN controllers that use DHCP
to manage forwarding rules will redirect traffic bound for
the victim’s IP address to the attacker’s network location.
This blackholes the victim, preventing them from receiv-
ing further traffic, and allows the attacker to impersonate
the victim. Any client request made to the hostname as-
sociated with the stolen IP address will be sent to the at-
tacker. Any existing connections made by the victim will
continue uninterrupted. New connection requests made
by the victim will reach their destination but the response
packets will be sent to the attacker. Since the victim is
unaware that its IP address has been re-bound, the attack
lasts until the victim obtains a new DHCP lease, which
would typically be hours or days later. This ensures the
hijacked binding will persist over large timescales.

Flow Poisoning Details. In some cases the IP
takeover phase is sufficient, and the victim’s persona is
successfully hijacked. However, in order to be compliant
with the DHCP RFC [15], many DHCP servers probe
a reused address before re-allocating it to a new client.
Typically, the DHCP server sends a broadcast ARP re-
quest to see if any host claims the reused address, vali-
dating that this IP address is not in use. If this probing
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Figure 3: Timeline of the Flow Poisoning Attack

before re-allocating an IP address is used, the IP takeover
phase will fail, because the victim is not aware that their
IP address has been released by the DHCP server and
will respond to the ARP request, causing the DHCP
server to refuse to lease the target IP address. In order
to ensure that IP takeover succeeds even in the presence
of probing, we developed a Flow Poisoning attack that
breaks the MAC address to network location binding of
the DHCP server in order to blackhole this response.

Our Flow Poisoning attack takes advantage of a race
condition unique to SDNs in order to break the MAC ad-
dress to network location binding of a targeted end-host.
The attack relies on the fact that SDN flow rules may
be temporarily inconsistent with the NIB maintained by
the controller. Since flow rules reflect the NIB state at
the time of their installation and (due to scalability chal-
lenges and network latency) are not updated instantly
when the NIB state changes, they may reflect previous
network states that no longer hold. Two approaches
are used to bound the duration of this inconsistency.
The first, used by Ryu and other learning-switch-based
controllers, relies on installing hard or soft timeouts on
all rules. The second, used by ONOS and other con-
trollers that implement a Host-Discovery Protocol, uses
a separate monitoring thread to detect host movement
and remove inconsistent rules. This monitor runs con-
currently with the NIB updater responsible for generat-
ing packet out events, which introduces an exploitable
race condition where the message is sent prior to new
flow rules being installed.

The attacker can take advantage of this temporary in-
consistency to blackhole traffic from a target source s to
a target destination d. Figure 3 depicts a timeline of this
attack. First, the attacker sends traffic (we chose ICMP
pings, but the attack is agnostic to the packet payload)
to s with the source MAC address of d. This breaks the
MAC address to network location binding of d.

Upon entering the switch, the forged packets cause a
flow table miss (since the MAC address of d is not bound
to the network location of the attacker) and are sent to the
controller. The controller updates its MAC to location



binding such that the destination MAC d is bound to the
attacker’s switch port. It then installs a new flow rule in
the switch enforcing this binding and forwards the ping
to the victim s. The victim s replies to the forged ICMP
ping, which causes another flow rule to be inserted into
the switch that sends all traffic from s to d to the switch
port on which the attacker resides.

Once d originates traffic, the controller will update its
internal mappings to correctly track d’s location (i.e., re-
binding the MAC address of d to the network location of
d). This begins the race condition on which Flow Poison-
ing relies. The now-inconsistent flow rule which binds
the attacker’s location to d’s MAC address will not be
removed from the switch upon NIB update. Instead, it
will either timeout several seconds later or be deleted by
the separate host mobility tracking thread. Until this oc-
curs, traffic from s to d will be sent to the attacker.

In the context of IP takeover, this technique can be
used to blackhole the reachability probe conducted by
a DHCP server prior to assigning the victim’s IP to the
attacker. Since the initial ARP request from the DHCP
server is broadcast to all ports, it is not possible to black-
hole. We, therefore, blackhole the unicast response from
the victim to the DHCP server by breaking the DHCP
server’s MAC address to network location binding. Note
that while the Flow Poisoning phase of the attack only
lasts until the flow rules are updated, the larger Persona
Hijacking attack utilizes this to create an attack that will
persist until the victim’s DHCP lease expires.

3.3 Attack Implementation
We have implemented both the IP takeover and Flow
Poisoning phases as fully automated Python scripts run-
ning on an attacking end-host. We use Scapy1 to forge a
DHCP RELEASE message for the IP takeover phase and
to request new IP addresses until the victim’s address is
offered. The Flow Poisoning phase simply consists of
sending an ICMP ping with the DHCP server’s MAC ad-
dress to the victim as soon as the DHCP Offer is received
by the attacker. The entire attack was tested in an emu-
lated SDN environment using Mininet 2.2.1 [30], against
both the ONOS and Ryu controllers. An analysis of the
Floodlight and POX source code suggests that they are
also vulnerable.

Because Flow Poisoning relies on a race condition, we
measured the Persona Hijacking success rate over 10 tri-
als, each of which took an average of 90.39 seconds to
acquire the target IP address. For Ryu, which uses hard
flow rule timeouts, the success rate was 90%. Failures
corresponded to an ARP Reply that was sent by the vic-
tim to the DHCP server after the inconsistent flow rule
expired. For ONOS, the Flow Poisoning phase was not

1http://www.secdev.org/projects/scapy/

Figure 4: Components of the network that must be
trusted with and without SECUREBINDER

necessary because ONOS provides a DHCP server in the
controller which does not probe reused addresses before
allocating them to new clients. Persona Hijacking was
always successful.

Our testbed was a machine running Ubuntu 14.04 with
an Intel Core i7-3740QM CPU and 16GB memory. The
experimental topology consisted of three hosts directly
connected to an OpenFlow 1.3 switch. One of these
hosts was a DHCP server running udhcpd from Busy-
Box v1.21.1. The other two were the attacker and the
victim. The DHCP server was configured to lease a total
of 5 IP addresses.

4 SECUREBINDER

This section presents SECUREBINDER, our system for
securing network identifier bindings. We first present our
design and then describe our implementation.

4.1 Design
The Persona Hijacking attack and other identifier attacks
are possible because of several network design character-
istics of identifier binding in traditional networks: (1) re-
liance on insecure protocols using techniques like broad-
cast for requests and responses without any authentica-
tion mechanisms, (2) allowing the changing of bindings
without considering the network-wide impact to services
relying on them, (3) allowing for independent bindings
across different layers without any attempt to check con-
sistency, and (4) allowing high-level changes to identi-
fiers that are designed and assumed to be unique. We
design SECUREBINDER as a comprehensive solution to
identifier binding attacks and the above attack facilitating
factors, not merely as another defense against a specific
attack. In doing so we dramatically reduce the number
of network components that must be trusted, as shown in
Figure 4.

SECUREBINDER leverages SDN and IEEE 802.1x to
target the facilitating factors as follows:

• It leverages SDN functionality to separate the iden-
tifier binding control traffic from the regular data plane,
isolating it from an attacker, and creating a binding me-
diator which can perform additional security checks on



identifier bindings. While this approach does not elim-
inate the use of insecure protocols for identifier binding
(which would require changes to every end host), it does
remove the requirement to trust these protocols.
• It validates identifier binding changes, by leverag-

ing the global view of the network and its identifiers that
SDN provides. It distinguishes between creating new
bindings and changing existing ones, requiring valida-
tion that the old binding is no longer active before allow-
ing changes.
• It prevents independent binding across layers by us-

ing lower layer bindings to validate messages that at-
tempt to change bindings at higher layers.
• It protects against readily changed, but supposedly

unique, identifiers by leveraging IEEE 802.1x to provide
a root-of-trust for network identifiers, binding the MAC
address to a cryptographic authentication and eliminating
disconnected host race conditions.

Assumptions. SECUREBINDER assumes that the
switches and the controller are not compromised and
that OpenFlow messages are cryptographically protected
(e.g., with TLS). It also assumes that the controller im-
plements secure topology detection, to be able to cor-
rectly differentiate network edge ports from internal
ports. This is in line with protection already provided
by solutions such as TopoGuard [24].

At a high-level, SECUREBINDER consists of a bind-
ing protocol mediator module, a binding store database, a
port control module, and a device authenticator module.
The binding store maintains authenticated bindings at all
layers that the protocol mediator uses to validate binding
protocol messages. It is updated by the binding protocol
mediator as bindings are updated. The binding protocol
mediator itself is responsible for verifying the bindings
in these protocol messages, performing additional vali-
dation for binding updates, and ensuring that bindings
are consistent with lower layers. The port control mod-
ule is responsible for configuring flow rules on individual
network ports to separate binding protocol traffic and en-
able egress filtering based on identifier binding updates,
802.1x authentication, and changes in port or switch sta-
tus. The device authenticator is responsible for authenti-
cating the MAC addresses of hosts using 802.1x.

Mediator. The mediator separates identifier binding
control traffic, like DHCP, ARP, and 802.1x, from nor-
mal data plane traffic and sends it to the control plane.
This means broadcast traffic no longer goes to all hosts
on the network, enabling all hosts to influence identifier
bindings, but only to the controller and a few select ap-
plications processing those broadcast requests. Once this
identifier binding control traffic reaches the controller,
the binding mediator validates it by using the global view
of the network enabled by SDN to check incoming bind-
ing control traffic against existing bindings. If an attempt

is made to rebind an identifier that is already bound, for
example, binding an IP address to a different MAC ad-
dress, the mediator performs additional verification, by
checking that the old identifier is no longer reachable,
before allowing this rebinding. Similarly, the mediator
enforces cross-layer consistency in identifier bindings,
requiring binding requests to originate at the same lo-
cation as the known identifier.

Port control. This module addresses bindings (i.e.,
MAC address to network location) that are implicitly in-
ferred from network traffic without an explicit signal-
ing protocol. It performs dynamic egress (i.e., source-
address) filtering on a per-port basis based on the binding
information, thus preventing spoofed packets at the first
SDN-controlled port and changing this implicit binding
to an explicit one controlled by the configuration of the
egress filters. While egress filtering has been used in the
past [29], SDN’s ability to automatically identify net-
work edge ports and dynamically configure flow rules
allows egress filtering to be done automatically.

Device authenticator. While the mediator and port
controller securely bind all higher identifiers to a MAC
address, they cannot guarantee that a MAC address cor-
responds to a particular physical device. This is because
MAC addresses can be easily changed on all modern
NICs and operating systems. This fundamental weak-
ness affects many traditional and SDN-based security
and access control systems, including Ethane [6] and
techniques that tie a MAC address to a single physical
port. The device authenticator addresses this issue by ex-
tending IEEE 802.1x, a network access technology sup-
ported by all major operating systems and platforms that
is designed to enable a network port if-and-only-if an au-
thorized client is connected. Traditionally, the RADIUS
authentication server used with 802.1x only verifies that
the device is authorized to connect to the network with-
out checking its MAC address or any other network iden-
tifier. If the device is authorized, 802.1x enables the port
and the device to send arbitrary traffic into the network.
We extend the authentication to validate each device’s
MAC address as well, providing a cryptographic root-of-
trust for our network identifier bindings.

802.1x operates using an authenticator on the switch
which tunnels EAP [1] messages between a supplicant
on the client and a RADIUS [42] authentication server
on the backend. The use of EAP and RADIUS en-
able many authentication mechanisms, including both
password based mechanisms (e.g., EAP-MSCHAPv2)
and certificate based mechanisms (e.g., EAP-TLS). We
choose to deploy EAP-TLS [47], which uses client cer-
tificates signed by a CA in the RADIUS server. A client
that is able to present a certificate signed by the CA is
considered authorized to access the network.

We augment 802.1x to validate the client’s MAC ad-



dress by having the (trusted) 802.1x authenticator, im-
plemented in the SDN controller, pass the client’s MAC
address to the RADIUS server. We then maintain a
database in our RADIUS server that associates each cer-
tificate’s common name with its MAC address.2 When
a new device is added to the network, the admin gener-
ates a certificate for it and adds its common name and
the device’s MAC address to this database. When the
client presents its certificate, it is first verified, and then,
if it is valid, its common name and the client’s MAC are
checked against this database. Only if they match is the
client authenticated. Note that this database is not acces-
sible outside of the system running the RADIUS server
and is only modified manually by the admin.

While we seek to provide a secure network that com-
pletely prevents identifier binding attacks, we also take
into account the currently-existing network devices. In
particular, while 802.1x is supported by the majority of
devices and operating systems, it is not yet universally
supported. For those devices, like printers or IP phones,
that do not support it, SECUREBINDER provides a weak
authentication based on the device’s MAC address. It
is important to understand that this drastically weakens
the authentication guarantees provided for that device,
allowing an attacker to impersonate that device to the
network.

Due to space constraints, for further details we refer
the reader to Appendix B.

4.2 Implementation
The introduction of multiple flow tables in OpenFlow
1.3 [38] eases the implementation of SECUREBINDER.
In particular, we reserve the first table, table 0, for sep-
arating identifier binding traffic from regular data-plane
traffic and doing egress filtering, while tables 1+ are used
for routing and other applications as normal. High prior-
ity flow rules are inserted into table 0 such that all 802.1x,
ARP, and DHCP traffic is sent to the controller while
DNS and Active Directory traffic are routed directly to
their respective servers. Egress filtering is accomplished
by inserting flow rules into table 0 such that flows with
expected source identifiers (both MAC and IP addresses)
are sent directly to table 1 to be routed as normal, while
all other traffic is rate limited and sent to the controller.

SECUREBINDER takes the form of a privileged SDN
controller application which has configured itself to han-
dle all packet in events before any other application. It
then looks for packets sent to it as a result of rules in ta-
ble 0. Any identifier binding traffic is validated, used to
update binding information, and sent to the relevant ap-
plication. Any other packets sent to the controller from

2This indirection enables a single certificate to be used on a multi-
homed host that has multiple MAC addresses.

rules in table 0 will be logged and dropped.
We implemented SECUREBINDER as an SDN appli-

cation in ONOS 1.5.1.3 We had to make a few modifica-
tions, totaling 548 lines of code, to the core of ONOS.
The major change, totaling 438 lines, was to secure
the implementation of topology detection provided by
ONOS. SECUREBINDER leverages secure topology de-
tection as a major performance optimization to dramati-
cally reduce the overhead by only validating packets and
installing egress filters at the edge of the network. While
existing work like TopoGuard [24] has demonstrated the
importance of secure topology detection and provided an
implementation, ONOS has not yet incorporated this fea-
ture. Secure topology detection protects against a wide
range of attacks so we believe it should be a service pro-
vided by all SDN controllers. Hence, we use it as an
optimization in SECUREBINDER. The remaining modi-
fications reserve table 0 for SECUREBINDER, moving all
other applications to table 1.

Our SECUREBINDER application itself is 2,350 lines
of Java. Since it processes packets prior to any other ap-
plication in the controller, it protects other applications
in use from incorrect binding information. This enables
us to use the existing ONOS ProxyARP and DHCP ap-
plications without modification.

5 Evaluation

In this section we provide a formal evaluation of the
security provided by SECUREBINDER against identifier
binding attacks and evaluate its effectiveness against our
new Persona Hijacking attack and its performance im-
pact in a testbed environment.

5.1 Formal Evaluation
In order to assess the security properties of SECURE-
BINDER, we conducted a formal, model checking-based
analysis of hosts interacting via ARP and DHCP over an
SDN, both with and without SECUREBINDER in place
at the controller. We defined a set of security invariants
which, if violated, correspond to the successful malicious
use of ARP, DHCP, or IP/MAC spoofing. Using the SPIN
model checker [22], we first ran an analysis without SE-
CUREBINDER. This returned a large set of automatically
discovered counter-examples (invariant violations) that
correspond to known ARP spoofing, Host-Location Hi-
jacking (also independently and manually discovered by
Hong, et al. [24]), and rogue DHCP attacks, as well as
our own IP takeover and Flow Poisoning attacks. Next,
we enabled SECUREBINDER in the model and re-ran the
analysis against the same set of security invariants. In

3http://onosproject.org/



this case, SPIN was unable to find any security viola-
tions, indicating that our defense prevented all of the pre-
viously discovered attacks.

Model Checking. Our formal models were written in
the Promela process modeling language, and the security
properties were checked using the SPIN model checker.
Models written in Promela define properties written in
Linear Temporal Logic (LTL). LTL has been used to
check safety and liveness properties, but also security in-
variants. For a full explanation of LTL syntax and seman-
tics, the interested reader can refer to the book by Reeves
and Clarke [41]. Once a Promela model is written and
the logical properties of its state variables defined, SPIN
can then be used to verify that those properties hold over
all reachable system states, or to find a counter-example
(i.e., an attack violating a security property). SPIN mod-
els all possible inter-leavings of non-atomic actions in a
concurrent system of communicating processes.

Model Architecture. Our analysis considers end-
hosts communicating via packets passed to an SDN
switch managed by a controller that uses the source ad-
dress fields of packet in events to populate a NIB used
to make routing decisions. A packet consists of an Eth-
ernet frame (containing source and destination MAC ad-
dresses) encapsulating either an ARP message or an IP
header and DHCP payload.

ARP is implemented as defined in RFC 826 [40], but
does not include the message fields or associated checks
for hardware and protocol types, since our analysis is fo-
cused on IPv4 Ethernet networks. ARP clients may also
send gratuitous ARP requests or replies.

A fragment of DHCP is implemented as defined in
RFC 2131 [15]. The full client and server state machines
are implemented (using symbolic addresses), but we do
not include any generic representation of DHCP options
or other configuration parameters not essential to the as-
signment of IP addresses. This is because we define any
DHCP payload from an unauthorized DHCP server to be
malicious, regardless of its content.

Communication occurs through uni-directional chan-
nels, in which senders place packets on a finite-length
FIFO queue and receivers remove messages from the
head of that queue. All communication between end-
hosts is mediated by the switch: that is, end-hosts place
packets in a switch queue, and the switch determines the
end-host queue to which it should forward the packet.

End-hosts are processes which non-deterministically4

send and receive ARP and DHCP client messages. The
target of unicast traffic is chosen non-deterministically.
One end-host is also designated as a DHCP server and
implements a DHCP server that uses ARP probes to de-
termine if a previously-used address is still in use. All

4Promela’s control structures are non-deterministic, because SPIN
considers all possible orderings of events in a system.

end-hosts faithfully follow protocol specifications (e.g.,
using correct source addresses).

An adversarial end-host does not follow protocol spec-
ifications. Any data field in an Ethernet, ARP, IP, or
DHCP message may be non-deterministically assigned
any symbolic value (e.g., another end-host’s source ad-
dress). Adversarial end-hosts may also act simultane-
ously as both DHCP servers and clients.

Security Properties. Our analysis is based on check-
ing the same set of invariants in two different cases: a ba-
sic SDN, and one in which SECUREBINDER is deployed.
These invariants are designed to completely capture cor-
rect network identifier binding behavior in the case of an
IPv4 Ethernet network with at most one IP address as-
signed to each network interface, one end-host connected
to each switch port, and no multi-homed end-hosts, as
described in Section 2.1. They utilize several ground-
truth tracking tables maintained in the model to check
the actual values of client and controller data structures
against their intended values in the absence of adversar-
ial behavior. The ground-truth invariants are intended
to represent ‘idealized’ network security enforcement,
which, while not implementable in the real world, will
be violated in the presence of any kind of attack against
network identifier bindings. Note that a number of sub-
invariants (such as a one-to-one binding of IP-to-MAC
and Mac-to-Port mappings) are implicitly captured, as a
violation of these would result in a violation of one or
more of the explicitly checked invariants.

We define two kinds of security properties: invari-
ants, which must hold in all model states, and assertions,
which must hold in a subset of model states. The former
are encoded as LTL formulas over model state variables
(e.g., the entries in each end-host’s ARP cache). SPIN
uses an automata-theoretic construction (see [22]) to en-
sure that no LTL violations occur in any reachable model
state, and to return an execution trace in the case that a
violation was found. Assertions are encoded as Boolean
predicates inserted inline in the model code, which are
checked whenever the model executes that line. LTL
invariants were used when security requirements con-
strained the value of a persistent data structure, such as
ARP or DHCP tables. The G operator in LTL states that
the formula must hold Globally over all reachable states.
Assertions were used for constraints on the value of non-
persistent messages passed over the network.

The security requirements that we checked are pre-
sented in Table 2 and discussed in detail in Appendix C.

Results. Because model checking is limited to a finite
state space search, it is necessary to bound the size of the
network for each analysis. We checked our invariants for
networks with a single attacker, DHCP server, and SDN
switch. Analyses were conducted for networks with end-
host populations ranging from 1 to 20.



Table 2: Identifier Correctness Requirements
Requirement Name Requirement Formula (LTL Invariants and Message Assertions)
Port–MAC Binding G(port to mac[p] == g mac at[p]) for each port p
MAC–IP Binding
(ARP)

G(arp tbls[c][i] == NO ENTRY || g mac to ip[arp tbls[c][i]] == i ||

g mac to ip[arp tbls[c][i]] == NO ENTRY) for each ARP table c and each entry i

Authorized DHCP (msg.cid == DHCP SERVER && (msg.dhcp.type==DHCP OFFER || msg.dhcp.type==DHCP ACK ||

msg.dhcp.type==DHCP NAK)) || (msg.cid != DHCP SERVER && (msg.dhcp.type==DHCP DISCOVER

|| msg.dhcp.type==DHCP REQUEST || msg.dhcp.type==DHCP DECLINE || msg.dhcp.type ==

DHCP RELEASE))

Genuine chaddr msg.dhcp.chaddr == g mac[msg.cid]

Genuine ciaddr msg.dhcp.ciaddr == g ip[msg.cid]

Genuine MAC msg.frame.eth src == g mac[msg.cid]

Genuine IP msg.ip.nw src == g ip[msg.cid]

Table 3: Attacks Found Through Invariant Checking
Attack Class Description Invariant Violated
ARP Spoof Gratuitous Request with Victim’s SPA and TPA and

own SHA
MAC–IP Binding (ARP)

ARP Spoof Gratuitous Reply with Victim’s SPA and own TPA MAC–IP Binding (ARP)
ARP Spoof Reply to Request with Victim’s SPA and own TPA MAC–IP Binding (ARP)
Host-Location Hijacking [24] Ethernet packet with victim’s MAC Port–MAC Binding, Genuine MAC
IP takeover DHCP Release with victim’s IP Genuine ciaddr
Flow Poisoning Ethernet packet to victim with target’s MAC Port–MAC Binding, Genuine MAC
Rogue DHCP DHCP OFFER from attacker Authorized DHCP

When SECUREBINDER was not deployed, many in-
variant violations were found corresponding to existing
attacks. Manual inspection of the execution traces re-
vealed that all of these are either known attacks or cor-
respond to our IP takeover or Flow Poisoning attacks.
These are summarized in Table 3.

When SECUREBINDER was enabled, no invariant vi-
olations were found. This indicates that the set of SDN-
based checks implemented by SECUREBINDER is equiv-
alent to the ideal invariants that can be checked with ac-
cess to ground truth. Note that formal verification via
model checking is sound but incomplete, because it is
based on a finite state space search of a larger, potentially
infinite, space. Model checking can be made complete,
however, if it can be shown that the larger region reduces
(e.g., via equivalence classes) to the explored region.

We argue (but do not formally prove) that this is the
case for our analysis. Above an end-host population of
3, all invariant violations were variants of those already
found in networks of 3 or fewer end-hosts. That is, while
the specific details of the violation (e.g., the protocol ad-
dress, hardware address, or ARP table) varied, the actual
violating condition (e.g., an IP address bound to a MAC
address not assigned by the DHCP server) was one al-
ready seen in the smaller analyses. Given this empirical
evidence, we suspect that no new attacks will be found
by adding more end-hosts to the analysis, nor will any
attacks be found in the case that SECUREBINDER is de-
ployed. Clearly, making the analysis more complex in
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Figure 5: Testbed Evaluation Network Topology

other ways (e.g., allowing multi-homing or multiple end-
hosts to share a switch port) may introduce new vulner-
abilities. Exploring these more complex scenarios is a
component of our future work.

5.2 Experimental Evaluation
We construct an emulated SDN testbed network and
launch three separate identifier binding attacks, includ-
ing our Persona Hijacking attack, at ONOS 1.5.1 with
and without SECUREBINDER. To guarantee representa-
tive results, we repeat each of the attacks ten times.

For our emulated SDN testbed we used Mininet
2.2.1 [30] with Open vSwitch 2.4.05 software switches.
We chose a minimal topology with a single switch and

5http://openvswitch.org/



Table 4: Performance Results
Controller Host Join New Flow pkt in’s
ONOS 1.5.1 505±578ms 8±4ms 131±2
SECUREBINDER 3,505±678ms 6±5ms 193±8
Overhead +3000ms -2ms +62

three hosts—an attacker, a victim, and a user that wishes
to contact the victim—for our network, as shown in Fig-
ure 5. The attacks we test are also relevant for more
complex topologies; we demonstrate them on a mini-
mal topology for simplicity. The experiments were per-
formed in an Ubuntu 14.04.4 VM with 2 cores of an
2.70GHz Intel i7 CPU available and 15GB of RAM. Our
test network uses ONOS 1.5.1 as the controller, provid-
ing shortest path routing, proxyARP, and DHCP.

Persona Hijacking attack. Since we test against
ONOS, we need only the IP takeover phase of the attack.
The attack was successful, allowing the attacker to steal
the victim’s IP address. On average, an attack took 49.8
seconds to execute, with effects lasting indefinitely.

ARP poisoning. The attack was successful, allowing
the attacker to receive traffic destined for the victim. This
attack lasts until the victim sends traffic that traverses the
controller, 41 seconds in our experiments, but depends
highly on the workload of the victim machine.

Host location hijacking. In this attack, previously re-
ported by Hong, et al. [24], the attacker sends spoofed
packets that contain the victim’s MAC address as their
Ethernet source address with the goal of confusing the
SDN controller into thinking that the victim has moved
to the attacker’s location. If this can be accomplished,
traffic for the victim will be sent to the attacker’s loca-
tion. We observed this attack to be completely successful
as well, allowing the attacker to receive traffic destined
for the victim. Like the ARP poisoning attack, this at-
tack has a limited lifetime. Once the victim sends traffic
that traverses the controller, the controller is able to cor-
rect the victim’s location, ending the attack. In our ex-
periments, this was an average of 51 seconds, but highly
depends on the workload of the victim.

In all of the above scenarios, SECUREBINDER threw
an alert and blocked the attack immediately.

5.3 Performance Evaluation
We evaluate the additional overhead our defense imposes
in terms of extra latency for devices joining the network
and on each new flow, as well as the additional controller
load and flow rules it generates. We run each experiment
10 times and present averages and standard deviations.

Latency. We measure Host Join Latency and New
Flow Latency. Host Join latency measures the latency
for a host to join the network and includes network link
detection, DHCP negotiation, 802.1x authentication–for

SECUREBINDER–, host detection, and flow rule setup
and installation of the first flow. New Flow Latency
measures the latency to start a new flow—sending a
packet in to the controller, forwarding, and rule in-
stallation. We measure Host Join Latency from the first
packet a host sends until the insertion of the first flow
rule. For New Flow Latency, we measure it from the
moment the first packet of the flow arrives at the switch
until the first flow rule is inserted. No packets after the
first in each flow will be diverted to the controller, so any
additional latency only impacts the first packet of a flow.

We compared unmodified ONOS 1.5.1, providing
shortest path routing, proxyARP, and DHCP, with SE-
CUREBINDER in a network topology with a single
switch. Table 4 shows the results. Host Join Latency is
higher for SECUREBINDER, at about 3.5 seconds. This
is compared to about 0.5 seconds for ONOS 1.5.1. Most
of this difference is due to the 802.1x authentication
and additional flow rule insertions required by SECURE-
BINDER. However, 3.5 seconds is actually fairly reason-
able considering that Host Join Latency represents the
latency for a host to join a new network.

New Flow Latency, by contrast, is essentially the same
between unmodified ONOS 1.5.1 and SECUREBINDER.
Our results even appear to indicate a slight decrease
when using SECUREBINDER, although that difference is
within the noise and not actually meaningful.

Controller load. We approximate controller load as
the number of packets handled by the controller. While
different packets may take noticeably different amounts
of processing to handle, this is a common proxy for con-
troller load and does accurately account for the addi-
tional load placed on the network via packet in mes-
sages, TLS message encryption load, message parsing,
and event loop processing.

We measured the number of packet in messages sent
to the controller using a Mininet network with 3 switches
and 4 hosts in a tree toplogy and compare unmodified
ONOS 1.5.1, providing shortest path routing, proxyARP,
and DHCP, with SECUREBINDER. Our experiment con-
sists of starting the network, waiting 30 seconds for the
network to stablize, performing a pairwise ping between
all hosts, and shutting the network down. Our results ap-
pear in the third column of Table 4. We observe a 47%
increase in the number of packet in’s processed by SE-
CUREBINDER, which is fairly significant. However, of
the 62 additional packet in’s, 32 are a result of 802.1x
authentication. This means that this additional load oc-
curs only when a new host joins the network.

Number of additional flow rules needed by SECURE-
BINDER. Flow rules are a limited resource in OpenFlow
switches. We can calculate the number of additional flow
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rules required per switch by SECUREBINDER as:

26+13∗ edge ports+ internal ports

The first term relates to static flow rules installed globally
in each switch to send 802.1x, ARP, and DHCP traffic to
the controller and block DNS, mDNS, and Active Direc-
tory by default. The second term describes flow rules
installed for each edge switch port to enable egress fil-
tering and allow non-spoofed Active Directory and DNS
traffic destined for the legitimate servers. The final term
includes the flow rules that are inserted in table 0 for in-
ternal network ports to send traffic directly to the normal
forwarding rules in table 1.

We plot this equation for both edge and core switches
with between 1 and 100 ports in Figure 6. We assume
edge switches have one port connected to the core net-
work with all other ports connected to edge devices while
core switches are connected only to other switches. Keep
in mind that most edge switches are usually in the 24-48
port range with the very high degree switches in the core
of the network. For a 48 port edge switch, SECURE-
BINDER would require 638 flow rules.

Determining the number of flow rules supported by
modern SDN switches is surprisingly challenging. The
number of TCAM slots in current SDN switches of about
48-ports varies from around 512 to 8,192 [12, 43, 7, 21]
and many vendors claim to be able to support 65,536
flow rules or more [7, 21]. We use 2,048 TCAM entries
(available on many switches) as a lowerbound and denote
it with a black dashed lined in Figure 6. For this lower-
bound, SECUREBINDER would require 31% of the rules
in a 48 port edge switch, 16% in a 24 port edge switch,
and only 4% in a 48 port core switch. For edge switches,
this is a significant, but still practical, overhead; assum-
ing the devices connected to such a switch communicate
evenly, each can talk to 29 other devices simultaneously

before exceeding the flow table limits. For core switches,
the overhead of SECUREBINDER is insignificant. Fur-
ther, if we consider the use of higher-end switches with
8,192 rules per switch, these overhead figures become
8%, 4%, and 0.9%, respectively.

6 Limitations and Discussion

Although the Persona Hijacking attack is extremely pow-
erful, it does have some limitations as well as several pos-
sible partial mitigations that may not prevent the attack
but can alert an attentive defender.

DHCP. Principle among these is that the target must
be using DHCP for Persona Hijacking to be applica-
ble. Another limitation is that DHCP starvation, de-
spite being extremely transient, is easily detectable and
likely to be monitored because it can also indicate net-
work malfunction. In a similar way, the large number of
DHCP DISCOVERs needed to launch the attack would
be readily noticed by a network anomaly detector. If
such monitoring systems are deployed, Persona Hijack-
ing would quickly be brought to the attention of the net-
work administrators. However, even if detected, mitiga-
tion would require the involvement of a human operator,
probably on a time scale of tens of minutes to hours.

Another factor that can complicate a Persona Hi-
jacking attack is the use of static DHCP leases fixing
IP addresses to specific MAC addresses. If the net-
work protects against MAC spoofing, this will com-
pletely prevent Persona Hijacking. However, we are un-
aware of any SDN controller implementing any form of
MAC spoofing protection. As a result, the attacker is
free to launch the Persona Hijacking attack by spoofing
DHCP DISCOVERs with the target’s MAC address at
a different network location. Interestingly, in this case
DHCP starvation is not required.

A number of security features commonly found in
traditional switches (e.g., port security [9] and DHCP
snooping [8]) make it more difficult to launch a DHCP
starvation attack by limiting the number of source MAC
addresses originating from a single port; however, a re-
cent starvation technique has been developed to bypass
these defensive mechanisms [50]. This technique ex-
ploits the DHCP server’s IP address conflict detection by
answering all the probes used to check if an address is in
use, without spoofed MAC addresses.

Despite these limitations Persona Hijacking remains a
powerful attack that co-opts the network infrastructure
to propagate a malicious identifier binding that will reli-
ably last for a significant time even in the presence of a
vigilant system administrator running many monitoring
tools. This level of persistence is unmatched among ex-
isting network identifier attacks and gives the attacker a
reasonable window in which to achieve their goals. Fur-



ther, while various security features can make this attack
more challenging to launch, they do not prevent it.

Our new defense, SECUREBINDER, is designed to
prevent not only Persona Hijacking attacks, but also any
other identifier binding attack. Much of the existing work
on defenses has focused on preventing single attacks.
Once such a defense is deployed, the attacker modifies
their attack slightly or transitions to a new binding and
continues. SECUREBINDER’s goal is to end this game of
whack-a-mole by providing a defense against all identi-
fier binding attacks. This influenced our design choices.

Use of 802.11 IEEE 802.1x is not required to de-
fend against Persona Hijacking or ARP poisoning. How-
ever, it is still an essential component of a unified de-
fense against identifier binding attacks, despite poten-
tially complicated configuration and deployment. In par-
ticular, 802.1x prevents MAC spoofing from being used
to bypass network access controls, like firewalls. With-
out 802.1x, an attacker can present a fake MAC address
belonging to a more privileged device. This presents
network access control systems with a confused deputy
problem; a device is identified by its MAC address and
any identifiers bound to that address, while the attacker
presents a MAC address corresponding to an authorized
device. Restricting MAC addresses to specific network
ports or ensuring that a MAC address is only present at a
single network port at a time can only partially mitigate
this attack. There will still be some important system
that must be widely mobile and occasionally powered
off. Attackers can simply attack this system.

Universal IEEE 802.1x deployment is not needed
on networks implementing a Bring Your Own Device
(BYOD) or public access policy. The purpose of 802.1x
is to prevent the attacker from impersonating a more priv-
ileged device. In these networks, all BYOD or pub-
lic devices are unknown to the network and therefore
equally (un)privileged. Hence, no confused deputy prob-
lem arises that would require strong device identities.
Note, however, that any known and trusted devices shar-
ing the same network should use 802.1x to protect them-
selves from being impersonated.

Applicability to wireless networks. Wireless de-
vices, like cell phones and laptops, are particularly vul-
nerable to impersonation in this manner. We have fo-
cused in this work on wired networks; however, SE-
CUREBINDER is equally applicable to wireless networks.
Unfortunately, OpenFlow support for wireless networks
is still nascent. While a few efforts have looked at the
changes to OpenFlow needed to support wireless net-
works [34, 54, 13], no code, devices, or emulators ex-
ist yet. Note that deploying SECUREBINDER at the first
wired switch after a wireless access point would still pro-
vide significantly improved security and would prevent
attacks that have to traverse the wired network.

7 Related Work

The closest work to ours is Ethane [6], which lever-
aged the SDN-provided global view of the network to
enable access control based on identifiers like hostnames
and users. However, it does not provide a root-of-trust
for network identifiers, instead authenticating based on
MAC addresses, and does not appear to distinguish be-
tween creating new bindings and updating existing bind-
ings. Additionally, Ethane does not manage or protect
the hostname-to-IP or user-to-hostname bindings.

A number of efforts [23, 20, 25] have investigated ac-
cess control in SDN networks. This is an important, but
orthogonal line of research. Access control allows or de-
nies network flows based on particular network identi-
fiers or characteristics. In this work, we attack and se-
cure the bindings between these identifiers. By breaking
these bindings an attacker can gain access to a false iden-
tity and all the network access rights of that false identity.
Access control is also being applied in the controller to
protect against malicious SDN applications [39].

TopoGuard [24] and SPHINX [14] studied attacks on
the MAC address to network location binding, which
they refer to as Host Location Hijacking. TopoGuard
proposes a defense based on differentiating between cre-
ating new bindings and updating existing bindings, re-
quiring a host to not be reachable at its old location
before updating the binding. SPHINX defends against
these attacks by ensuring that new flows conform to ex-
isting identifier bindings, preventing spoofed packets.
Both defenses are vulnerable to MAC address spoofing.

In traditional networks, several network identifier at-
tacks and defenses have been developed over the years;
they tend to only address a single layer of the network
stack at a time, and the defenses may only be heuristic in
nature. Port Security [9] is a heuristic defense against
MAC spoofing, which limits the number of MAC ad-
dresses that can be present on a single network port.

To prevent ARP spoofing [11], a wide range of de-
fenses based on replacing ARP with secure variants have
been proposed [4, 32, 35]; however, vendor-supported
technologies such as Cisco Dynamic ARP Inspection
(DAI) [29], which compares ARP replies with DHCP
server records, or monitoring tools like arpwatch [31]
are used more often in practice. These technologies have
a number of limitations, including not protecting static
IP addresses and requiring manual configuration.

To prevent rogue DHCP servers [49], DHCP Snoop-
ing [8] can be used to separate the switch ports into
trusted and untrusted zones. This defense requires man-
ual configuration of the trusted and untrusted zones and
is limited to protecting against attacks on DHCP only.

Defenses against DNS spoofing [48] include increas-
ing the randomness in the DNS query, using random



source ports and transaction IDs, to protect against blind
attackers [48], as well as cryptographic techniques like
DNSSEC [2] that protect the authoritative response from
tampering. DNSSEC has yet to be widely deployed.

The username to hostname binding can be protected
using Kerberos [37] for authentication, as is the case in
Microsoft Active Directory, but architectural and imple-
mentation issues enable various attacks, such as pass-the-
hash [16, 17], in practice.

8 Conclusion

We have built a proof-of-concept attack in SDNs to hi-
jack MAC and IP addresses, steal hostnames, and poison
flows to remove victim bindings and accessibility. We
have thereafter shown how to use SDN capabilities to
prevent such attacks by implementing a new defense that
exploits SDN’s data and control plane separation, pro-
grammability, and centralized control to protect network
identifier bindings, and builds upon the IEEE 802.1x
standard to establish a cryptographic root-of-trust. Eval-
uation shows that our defense formally and experimen-
tally prevents identifier binding attacks with little addi-
tional burden or overhead.
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A Network Identifiers

Network protocols rely on identifiers of the communicat-
ing entities in order to achieve their goals. Such goals,
are not only to ensure delivery of packets from a source
to a destination, but also to enforce access control and
authorization policies (e.g., authority to update a DNS
record or to access a service using Kerberos). The key
identifiers used at different layers of the networking stack
are: network location, MAC address, IP address, host-
name, and username.

We consider the device as the basic entity with an iden-
tifier, be it an end-host, a server, a printer, or an embed-
ded system, etc. Devices are distinct from users of those
devices. Devices may have multiple network interfaces
(e.g., virtualized interfaces or multiple Network Interface
Cards (NICs)), which may have different identifiers.
Network Location: The lowest level network identifier
is the physical switch and port to which a device is con-
nected. We refer to this identifier as the Network Loca-
tion of a device and define it as a tuple (switch, port),
where switch is a unique identifier for a switch, a se-
rial number or management IP address in traditional net-
works and a Data Path Identifier (DPID) in OpenFlow
SDNs, and port is an integer representing the port num-
ber on that switch. As a device’s network location is at
the edge of the network, a device could potentially have
multiple network locations if it is multi-homed. Addi-
tionally, multiple devices may be associated to the same
network location due to, e.g., virtualization of end-hosts.
Thus the mapping between devices and network location
is a many-to-many mapping.
MAC Address: A MAC address identifies a NIC or
group of NICs on an Ethernet network. There are three



Figure 7: State Machine for each Network Port in
SECUREBINDER

types of these addresses: Unicast, Multicast, and Broad-
cast. Multicast and broadcast addresses allow sending
traffic to a particular subset of devices simultaneously
while unicast addresses are intended to unambiguously
identify a device on the network. Unicast MAC ad-
dresses need to be unique in any given Ethernet network
or traffic mis-delivery will occur; a unicast MAC address
is assigned to each NIC during manufacture.
IP Address: An IP address is used to route traffic across
and between networks to a particular device. There are
four types of these addresses: Unicast, Multicast, Any-
cast, and Broadcast. The last three categories are spe-
cial addresses used to send traffic to a particular sub-
set of devices simultaneously. A Unicast IP address is
a unique identifier for a device interface which is con-
strained to a particular subnetwork (to enable route ag-
gregation). They are either statically configured or as-
signed using DHCP for IPv4 or DHCPv6 for IPv6. IPv6
also adds a stateless autoconfiguration assignment mech-
anism known as SLAAC. Only one device in a network
can have a particular unicast IP address.
Hostname: A hostname is a human readable name for a
system that can be used instead of an IP address. Since
one hostname could be associated with multiple IP ad-
dresses and one IP address could be associated with mul-
tiple hostnames, this is a many-to-many mapping.
Username: A user account identifies a particular user
logged onto a system (denoted with a hostname). Many
users may be logged into the same system and a single
user may be logged into multiple systems, making this a
many-to-many mapping.

B SECUREBINDER Design Details

In SECUREBINDER, each network port in the system
is in one of four states: Unknown, Internal, Edge,
or Quarantined. Each port initially comes up in the
Unknown state, where all traffic is sent to the controller.
A port connected to another switch, as identified by the
controller’s topology detection using LLDP, is put into
the Internal state, where it sends all traffic directly to
table 1 for forwarding. Once at least one host is detected
on a port, it is put into the Edge state, where it is part

of the network edge. In this state, rules are inserted to
send packets from known and validated source addresses
directly to table 1 while all other traffic is sent to the con-
troller. Finally, a port is placed into the Quarantined

state when it has been determined that a device on that
port is misbehaving. All traffic from Quarantined ports
is dropped. See Figure 7 for the state machine.

To protect the MAC address to network location bind-
ing, we use egress filtering along with 802.1x such that
all packets except 802.1x frames that are not associated
with an existing binding on a port are dropped. 802.1x
frames are passed to our system’s 802.1x authenticator
in the SDN controller, where the encapsulated EAP mes-
sages are sent to the RADIUS server.

We use EAP-TLS authentication, which requires the
client to present a valid certificate signed by our internal
CA. Additionally, we maintain a database mapping cer-
tificate common names to MAC addresses and require
the MAC address of the client (as recorded by the trusted
802.1x authenticator in the SDN controller) to match the
MAC address associated with the the common name of
its certificate in the database. This database is updated
manually by the administrator as part of the initial de-
vice configuration. If the authentication succeeds, we
bind this MAC address to this port and insert flow rules
sending packets with this MAC address and port to table
1, for forwarding.

To identify hosts that have disconnected, we listen for
port down events and 802.1x log-off messages and re-
move the corresponding MAC to location bindings. To
account for cases where a host may leave the network
without sending a log-off message and without the port
going down (e.g., a device behind a hub), we periodically
query all idle hosts with an ARP ping; devices that do not
respond are removed.

We provide support for non-802.1x devices by moni-
toring the MAC addresses seen on each port and check-
ing whether each one attempts 802.1x authentication
within 60 seconds of connecting. If it does not, we as-
sume the device does not support 802.1x and send a RA-
DIUS access request where the username and password
attributes simply contain the device’s MAC address. The
RADIUS server uses a separate database to look up this
username and password pair (i.e., MAC address) to see
if this device has been granted access. If it has, we then
setup the MAC address to network location binding and
egress filters to allow it access to the network. Note that
since there is no guarantee that this MAC address repre-
sents the expected physical device, we recommend stati-
cally configuring the network port that each of these de-
vices may connect to and placing stringent ACL rules in
the network for such devices to limit network access to
only expected locations.

To secure the binding from IP addresses to MAC ad-



dresses, we insert high priority flow rules sending all
DHCP and ARP traffic to the controller. Our controller
application then checks these packets to ensure that they
are self-consistent (i.e., source identifiers in the Ether-
net header match those in the ARP/DHCP headers) and
that they are consistent with our existing IP to MAC
and MAC to location bindings. Inconsistent packets are
dropped while validated packets are passed off to an ex-
ternal DHCP server or the controller’s ProxyARP appli-
cation to handle. Note that since our application is the
first application to handle these packets, any packets with
invalid mappings will be dropped by our application be-
fore they can poison other controller applications.

For DHCP, we drop all server messages except those
originating from the legitimate server’s network location,
thereby preventing rogue DHCP servers. We also track
the IP address assigned by the server to update our IP to
MAC binding information.

We support manually configured static IP addresses
by requiring the IP to MAC mapping to be entered in
a configuration file. This static IP can be additionally
constrained to a single network location. Note that tradi-
tional networks with multiple subnets would require sim-
ilar configuration.

Once we have an IP to MAC address binding, whether
from DHCP or static configuration, and know the loca-
tion of this MAC address in the network, we update the
egress filters. In particular, we add one flow rule match-
ing on the port, MAC, and IP address that belongs to this
device which sends legitimate traffic to table 1 for for-
warding, and we add a second rule that sends all other IP
traffic from this port and MAC address to the controller
(after a rate limit), preventing IP spoofing.

Interestingly, with 802.1x, DHCP, and manual static IP
configuration, we can automatically populate the MAC
to location and IP to MAC bindings for all possible
reachable hosts. This means we never need to depend
on ARP replies from end hosts to populate our bindings.
This completely eliminates all ARP poisoning attacks,
which operate by either changing the IP to MAC binding
or the MAC to location binding.

To secure the hostname to IP address binding, we in-
sert high priority flow rules to drop spoofed DNS pack-
ets and send all valid DNS requests to the DNS server
while dropping all DNS replies that do not originate at
the legitimate DNS server. This prevents the operation of
rogue DNS servers and the use of alternate DNS servers.
We also drop all multicast DNS and NETBIOS traffic be-
cause the broadcast nature of these protocols makes them
inherently insecure.

Finally, to secure the username to hostname binding
we separate directory service traffic from the dataplane
by inserting high priority flow rules to send this traffic di-
rectly to the directory server while dropping all spoofed

packets. This prevents rogue directory servers and many
replay attacks.

C SECUREBINDER Security Require-
ments

We used SPIN to check our formal model of identifier
bindings and SECUREBINDER against the following se-
curity requirements listed in Table 2 in Section 5. These
formal security requirements attempt to capture the fol-
lowing natural goals:

• Port–MAC Binding checks that the SDN’s map-
ping of MAC addresses to switch ports is consistent
with the ground-truth mapping.

• MAC–IP Binding (ARP) checks that for every en-
try in the client’s ARP Table, one of the following
properties holds:

– There is no MAC address for the associated IP.
– The MAC address for that IP address is the

ground-truth owner of that IP address.
– There is no ground-truth owner of that IP ad-

dress. This condition arises due to stale ARP
cache entries for a released IP address.

• Authorized DHCP checks that DHCP messages
which should only be sent by the DHCP server
are sent by the DHCP server. It also checks that
messages which should only be sent by a DHCP
client were not sent by the server. This assertion
is checked whenever a DHCP message is received
by a client or server, prior to any other packet pro-
cessing.

• Genuine chaddr checks that the client hardware
address in a DHCP message matches the ground-
truth MAC address of the sender. This assertion
is checked whenever the DHCP server receives a
DHCP message.

• Genuine ciaddr checks that the client network ad-
dress in a DHCP message matches the ground-
truth IP address of the sender. This condition
is checked whenever the DHCP Server receives a
DHCP REQUEST or DHCP RELEASE.

• Genuine MAC checks that the source MAC in an
Ethernet frame matches the ground-truth MAC ad-
dress of the originator. This condition is checked
whenever a packet is received on a switch port.

• Genuine IP checks that the source address in an IP
header matches the ground-truth IP address of the
originator. This condition is checked whenever a
packet is received on a switch port.


