
Leveraging State Information for Automated Attack

Discovery in Transport Protocol Implementations

Samuel Jero

Purdue University

sjero@purdue.edu

Hyojeong Lee

Purdue University

hyojlee@purdue.edu

Cristina Nita-Rotaru

Purdue University

cnitarot@purdue.edu

Abstract—We present a new method for finding attacks in
unmodified transport protocol implementations using the specifi-
cation of the protocol state machine to reduce the search space of
possible attacks. Such reduction is obtained by appling malicious
actions to all packets of the same type observed in the same
state instead of applying them to individual packets. Our method
requires knowledge of the packet formats and protocol state
machine. We demonstrate our approach by developing SNAKE,
a tool that automatically finds performance and resource exhaus-
tion attacks on unmodified transport protocol implementations.
SNAKE utilizes virtualization to run unmodified implementations
in their intended environments and network emulation to create
the network topology. SNAKE was able to find 9 attacks on 2
transport protocols, 5 of which we believe to be unknown in the
literature.

I. INTRODUCTION

Transport protocols provide end-to-end communication in a
layered network architecture by implementing guarantees such
as reliability, in-order delivery, and congestion control. They
are used not only directly by applications, but also by Internet
services such as BGP and secure protocols such as SSL. The
most well known transport protocol is TCP, which underlies
the majority of Internet communication today and provides
connections, reliability, in-order delivery, flow control, and
congestion control to applications that use it.

The design and implementation of transport protocols is
complex, with many components, special cases, error condi-
tions, and interacting features. Further, many implementations
are written in low level languages like C for improved per-
formance and make use of error-prone, but highly efficient,
constructs like pointer manipulation and type casting. These
low level constructs are difficult to address by model checking
systems, making such systems of limited use beyond checking
the protocol design. Unfortunately, transport protocol imple-
mentations often sacrifice simplicity and ease of understanding
for improved performance, resulting in a high probability of
bugs introduced during implementation.

Although there are few transport protocols in common use,
because of their ubiquitous role in network communication,
there are many different implementations and variants of
these transport protocols. For example, the nmap security
scanner is able to detect 3,079 distinct TCP/IP network stack
configurations in its most recent version [1]. This includes
printers, VoIP phones, routers, and embedded systems, along

Hyojeong Lee is now with Google, Inc. This work was done while at Purdue
University.

with general purpose operating systems. While many of these
may be different configurations of a few common networking
stacks, these variations represent different handling of partic-
ular network conditions, which often implies the exercise of
different code paths.

Despite the importance of these protocols and the com-
plexity and number of their implementations, the testing of
transport protocol implementations has been mainly a manual
and ad-hoc process [2], [3], [4]. This lack of systematic testing
for transport protocols and their implementations has resulted
in a stream of new bugs and attacks [5], [2], [6], [3]. Consider
TCP, one of the most well studied and well tested network
protocols; the list of discovered attacks extends from the mid-
1980’s to the present day [7], [8], [9], [10], [11], [12], [13].
Many of these attacks have been discovered repeatedly or
rediscovered again in slightly different contexts.

Prior work in testing network protocol implementations has
focused on easing the development of manual tests [2], [14]
and on enabling deeper testing for crashes by using stateful
fuzzing techniques [15], [16], [17]. Other work has focused
on systematic testing by leveraging techniques like symbolic
execution [18], [5] and dynamic interface reduction [19] in
combination with concrete attack execution. Many of these
techniques require access to the source code and require heuris-
tics to efficiently handle low level constructs like type casting,
pointer casting, and function pointers, which are heavily used
in network protocol implementations. The major challenge
faced by all of these approaches is search space explosion.

In this paper we focus on automated attack finding for
transport protocol implementations. Specifically, we leverage
information about the packet formats and protocol state ma-
chine to automatically create attack scenarios consisting of
malicious actions performed on protocol packets in targeted
protocol states. Knowledge of the packet formats enables the
generation of malicious packets based on packet type while
information about the state machine allows the tracking of
the current state of the protocol at runtime. State tracking
is achieved without code instrumentation by monitoring the
packets while malicious packet manipulation is achieved using
a network proxy. By inferring the current state of the protocol
state machine, our method can perform malicious actions on
all packets of a particular type in a particular protocol state
instead of on individual packets, significantly reducing the
search space. The protocol state machine also allows us to
identify key points for attack injection in the transport protocol,
ensuring wide coverage. Note that the state machine and packet
formats are an important part of any protocol specification.



As such, they are often readily available in the specification
documents themselves. For proprietary protocols where the
specification of the state machine may not be available, recent
work in state machine inference may be leveraged [20].

Our approach works with unmodified implementations ir-
respective of their operating system, programming language,
or required libraries. It does not require access to the source
code, enabling the testing of a wide range of transport protocol
implementations, including proprietary, closed-source systems.

The contributions of this paper are:

• We present a new approach to search space reduction
without instrumenting the code. This approach lever-
ages the description of the protocol state machine to
identify critical points in the search space for attack
injection and to explore the implementation more
thoroughly. We use knowledge of the packet formats
to perform a variety of malicious actions, including
packet field manipulation, and apply these malicious
actions to packet type, protocol state pairs instead
of individual packets, enabling significant state space
reduction. We also use the protocol state machine to
ensure that we test all protocol states, providing wide
coverage.

• We demonstrate our approach with SNAKE, our new
tool for finding attacks on unmodified transport layer
protocol implementations running in arbitrary operat-
ing systems and in realistic networks. SNAKE (State-
based Network AttacK Explorer) uses virtualization
to run unmodified transport layer implementations in
their intended environments and a network emulator
to tie these virtual machines together into a realistic,
emulated network. The network emulator intercepts
and modifies packets, tracks the current protocol state
during execution, and uses this information to create
packet-based attacks at specific points in the state ma-
chine execution. SNAKE is general for use on many
transport protocols, requiring only the description of
the packet header formats and the transport protocol
state machine as input.

• We use SNAKE to examine a total of 5 implementa-
tions, 2 transport protocols—TCP and DCCP—, and 4
operating systems. We find 9 attacks, 5 of which are, to
the best of our knowledge, unknown in the literature.
We also compare our state-based attack search with
two baseline approaches and show its effectiveness in
search space reduction.

The rest of this paper is organized as follows. Section II
reviews related work. Section III discusses the system and at-
tack models we consider. Sections IV and V present the design
and the implementation of our system, respectively. Section VI
shows our results, including the attacks we discovered, while
Section VII concludes our work.

II. RELATED WORK

A variety of other works have looked at automatically find-
ing vulnerabilities in network protocols or distributed systems.
One common method for doing this is to combine model
checking techniques with actual execution. DeMeter [19] is

one such tool that uses a technique called dynamic interface
reduction to reduce the search space. The key insight of
this technique is to hide local non-determinism by splitting
a distributed system into components that communicate via
message passing.

Several other systems [18], [5] leverage a technique called
symbolic execution. Symbolic execution simulates code exe-
cution using symbolic variables and updates these variables
with constraints as the code runs [21]. MACE [18] combines
symbolic execution with concrete execution and protocol state
machine inference. The inferred protocol state machine is used
as a search space map to allow deep exploration and enable
parallelism. From each state, a combination symbolic/concrete
execution system is started. The symbolic execution identifies
new code paths to explore with further concrete execution.
MAX [5] utilizes symbolic execution to find manipulation
attacks against network protocols. MAX takes some metric
of performance and possible vulnerable lines of code and
uses symbolic execution and concrete testing with a malicious
proxy to attempt to repeatedly force that vulnerable statement
to be executed. In contrast, SNAKE does not rely on model
checking techniques that require access to the protocol source
code or manual marking of vulnerable statements.

Another method for finding vulnerabilities in network
protocols and their implementations is fuzzing. KiF [15] is
one such fuzzer. It is designed to test SIP implementations for
crashes or fatal errors and makes use of the SIP packet format
as well as the SIP protocol state machine to cover deeper and
more relevant portions of the search space. Interestingly, the
authors infer a protocol state machine for each implementation
they test instead of using the state machine from the protocol
specification. SNOOZE [14] and EXT-NSFSM [16] are other
network protocol fuzzers. SNOOZE [14] also targets the SIP
protocol and makes use of the protocol state machine to track
the target implementation. However, SNOOZE requires the
user to provide a fuzzing scenario and so does not need to
deal with state space reduction. EXT-NSFM [16] uses the
state machine of a target protocol to enable deeper fuzzing
of application protocols like FTP. In particular, it tracks the
protocol state machine to determine what part of the protocol
to fuzz without unnecessarily restarting the application. Both
tools search for crashes or other fatal errors.

Packetdrill [2] is a framework for creating tests for network
protocol stacks. It is designed to help reproduce bugs or
ease the writing of regression tests. The rich environment
Packetdrill provides allows sending and receiving packets
using a tcpdump-like syntax as well as the performance of
system calls and the running of arbitrary shell commands or
python scripts. SNAKE is orthogonal to Packetdrill. They have
different goals and can compliment each other: our approach
offers great breadth for test coverage while Packetdrill provides
depth for specific test cases.

Turret [6] is a platform for finding performance attacks
against intrusion tolerant distributed systems. Turret inserts
a malicious proxy in front of an unmodified implementation
to simulate a malicious attacker and uses a greedy search
strategy to look for the malicious actions that cause the largest
impact in system performance. SNAKE uses a different set of
malicious actions that are tailored for transport-layer, two-party
protocols instead of multi-party application protocols. Further,



since intrusion tolerant distributed systems are designed to be
attack resistant, Turret is able to use a greedy search strategy
that looks for actions that cause performance impacts and then
combines them. By contrast, SNAKE uses a search strategy
based on the network protocol state machine.

III. SYSTEM AND ATTACK MODEL

In this section we provide an overview of transport proto-
cols and describe the attacks that we consider in this paper. As
usually such protocols are deployed in a client-server setting,
we will refer to the two parties as client and server.

A. Transport Protocols

Transport layer protocols provide end-to-end communica-
tion between two applications running on two different hosts.
They use the concept of a port to allow multiple applications
to use the same host simultaneously and provide a checksum
to protect data from accidental corruption as it travels from
one host to the other. With the exception of UDP [22], which
provides only unreliable data delivery, most transport protocols
provide additional services such as: (1) reliability, (2) ordered
delivery, (3) flow control, and (4) congestion control. Many
transport protocols are connection-oriented, as both parties
need to maintain state. Connection-oriented protocols consist
of three phases: connection establishment, data transfer and
connection tear-down.

Connection establishment. Connection establishment,
typically in the form of a handshake, takes place before any
data can be exchanged between the client and the server.
During connection establishment the client and server ex-
change sequence numbers, set sequence windows, and allocate
necessary buffers. Errors or delays in this phase may lead to
connection termination without any data transfer.

Data transfer. Once a connection is established, data
flows between the two parties. During this phase, packets
may be buffered by the sender, to guarantee reliability, and
by the receiver, to enforce ordered delivery to the application.
Additionally, system parameters such as congestion window
size and timeouts are dynamically adjusted to implement flow
control and congestion control.

Reliability. Reliability is usually implemented using ac-
knowledgments and retransmissions. The sender uses a buffer
to store data that has been sent and includes a sequence
number on each packet. Periodically, the receiver sends an
acknowledgment to the sender. When the sender receives
this acknowledgment, it determines what data has been lost
and retransmits this data. Data acknowledged as received
correctly is also removed from the sender’s buffer. Since there
is the possibility of acknowledgments being dropped by the
network, the sender includes a timer to retransmit data if no
acknowledgment of sent data has been received after some
lengthy time interval. Note also that transport protocols are
allowed to declare failure after several retransmissions and
terminate the connection without having delivered the data.
Failure of reliability will result in connection termination or
an improper change in sending rate due to interactions with
congestion control.

Ordered delivery. Ordered delivery guarantees that data
sent by one application is received at the other in the same

order that it was sent. This is related to reliability and the
two are usually implemented together. Implementing ordered
delivery also requires a packet sequence number, allowing the
receiver to determine the sending order. Packets received out of
order are buffered at the receiver until the missing packets are
received. The packets can then be delivered to the application
in order. A failure of ordered delivery would result in receiver
buffer overflow or the delivery of out-of-order data to the
application.

Flow control. Flow control ensures that a sender does not
overwhelm a slow receiver with more data than it can buffer.
The goal is for the sender to send at the same rate that the
receiver is receiving. Flow control is specified as a sliding
window indicating the data that the receiver can currently
buffer. The sender is then limited to sending that window of
data before receiving an acknowledgment indicating that the
window has either slid forward or increased in size. Issues
with flow control will cause unnecessarily slow throughput or
receiver buffer overflows and data retransmissions.

Congestion control. Congestion control serves two related
purposes. First, it protects against congestion collapse in the
network, and second, it provides fairness between competing
flows. Congestion collapse occurs when severe network con-
gestion, or over-utilization, results in the network spending
the majority of its time sending data that will eventually
be dropped. This results in a persistent drop in throughput.
Ultimately, congestion control operates by detecting indicators
of congestion and slowing down the sending rate in response.
The means of detecting congestion and the precise details of
the response to congestion vary significantly between transport
protocols and even within the same protocol. Often, dropped
packets or increased RTT are used to identify congestion.
Issues with congestion control will cause the sending rate to
be increased or decreased improperly and unnecessarily.

A particularly important property of congestion control is
fairness. That is, if two flows are competing over bandwidth
on a bottleneck link, they should share the bandwidth equally.
The networking community has generally understood this to
mean that the flows achieve throughput within a factor of two
of each other [23], [24]. Issues with fairness may cause unfair
competition between flows, possibly resulting in starvation.

Connection tear down. After all desired data has been
transferred, there must be a way for client and server to
signal this to each other and release all state associated with
the connection. Like connection establishment, connection tear
down takes place through a handshake in which the two hosts
indicate that they are done sending data and are ready to close
the connection. A failure to properly tear down the connection
may result in the associated state staying around on both hosts
much longer than desired and resources remaining allocated.

B. Attack Goals

We focus on attacks that target any of the phases of a
transport protocol: connection establishment, data transfer, or
connection tear down. In the case of data transfer, we consider
attacks against all goals: reliability, ordered delivery, flow
control, and congestion control (including fairness).

Connection-related attacks. An attacker can interfere
with the connection establishment or connection tear down



(a) A malicious client manipulates
packets belonging to the A-C con-
nection, trying to increase or de-
crease its performance relative to the
B-C connection

(b) An off-path attacker injects
packets, targeting the B-C connec-
tion

Fig. 1. Examples of attacker location and target connections

protocols by preventing them from achieving their goals:
establishing a connection or cleanly terminating a connection.

Preventing connection establishment attacks are actions
taken by a malicious host to prevent some target connection
from being established and transferring useful data. These
actions occur at the same approximate time as the target
connection attempt and target the very core of the transport
protocol by preventing a user from successfully initiating a
connection.

End-host resource exhaustion attacks are actions taken by
a malicious host to force the other end of the connection to
exhaust some limited resource (memory, sockets, etc) in order
to deny service to other (legitimate) requests, creating a denial
of service condition. These actions occur in already established
connections and target future connections that have yet to be
attempted. These attacks are conducted by malicious clients
against a server in an attempt to prevent legitimate users from
accessing the provided service.

We do not consider connection hijacking attacks. These
attacks require sampling from the target implementation or the
collusion of a low-privilege component on the victim.

Performance-related attacks. An attacker can also target
the performance of an individual connection, either by seeking
to degrade the throughput of some target connection or by
seeking to compromise the fairness of the protocol’s conges-
tion control algorithm.

Throughput degradation attacks are actions taken by a
malicious host to decrease the throughput of some target con-
nection, often with the intention of making the connection so
slow that it is useless to the initiating application. These attacks
target the congestion control and flow control algorithms of the
transport protocol.

Fairness attacks are actions taken by a malicious host
to unfairly increase its throughput at the expense of other
competing connections. This type of attack directly targets
the fairness of the transport protocol’s congestion control
algorithm. Many of these attacks also indirectly compromise
the reliability of the transport protocol.

We do not consider denial of service conditions that result
from an attacker consuming all of a service’s network band-
width nor those resulting from a sheer overwhelming number
of connections. The transport layer can do nothing to prevent
these attacks.

C. Attacker Interaction with the Protocol

We consider a client-server setup where the attacker is
either a compromised client or an off-path third party. Note that
an attacker can also conduct on-path attacks. For example,
modifying data in transit or dropping connection initiation
requests. We do not consider such attacks since transport
protocols such as TCP are not usually designed to address
these attacks.

Malicious client. In this case, the attacker is a compro-
mised client. As shown in Figure 1(a), the attacker is one of the
endpoints so he can view all packets in the connection, create
arbitrarily formed packets, and respond arbitrarily to incoming
packets. This may include ignoring received packets, delaying
or duplicating responses, or setting unusual field values in sent
packets or sequences there of. Such an attacker can target the
fairness of the network protocol by seeking to gain more than
his fair share of network bandwidth. He may also seek to deny
bandwidth to other flows by abusing his connection with the
server or use repeated connections to cause resource exhaustion
on the server.

Off-path attacker. In this case, the attacker is not one
of the endpoints of the connection, but a third party, placed
off-path. As shown in Figure 1(b), the attacker cannot view
or modify the packets in the target connection. Instead, he is
limited to spoofing packets, either individually or in sequences,
such that they appear to originate at either the client or the
server. An attacker in this position is likely to seek to attack
the ability to establish the target connection or the congestion
control of that connection.

IV. DESIGN

In this section, we discuss the design of SNAKE. We first
provide an overview of our approach, then describe how we
utilize the state machine of the protocol to reduce the search
space and generate attack strategies. Finally, we describe the
packet-level basic attacks we consider.

A. Overview

We focus on finding attacks in unmodified implementations
of transport protocols. We consider attacks on connection es-
tablishment as well as resource exhaustion attacks, throughput
degradation attacks, and fairness attacks. These attacks can
be identified by examining the results of an attempted data
transfer. Specifically, connection establishment attacks can be
identified by observing a target connection that transfers no
data. Resource exhaustion attacks result in incomplete socket
cleanup at the server. Throughput degradation attacks and
attacks on fairness can be identified by unfair competition
between a target connection and its competitor; throughput
degradation attacks target the low throughput connection while
attacks on fairness target the high throughput connection. All
of these attacks can be detected by running the protocol for a
relatively short period of time.

We select an environment that combines virtualization with
network emulation. Virtualization allows us to test a wide
range of implementations independent of language, operating
system, or access to source code. The network emulation
provides us the reproducible measurements and attack isolation



Fig. 2. Design of SNAKE

needed to detect performance-related attacks. Figure 2 presents
our system design.

The attack strategies we consider can be created by packet
manipulation and injection based on the packet type and the
individual packet fields. These strategies are selected from a set
of basic attacks derived from information about packet formats.
For instance, an attack strategy may be to duplicate packets of
type W ten times, or to inject a new packet of type X with field
3 set to Y, or to modify field 5 of packet type Z to 555. Each
of these attack strategies are performed in particular protocol
states.

To determine what kinds of basic attacks would be most
useful, we performed a detailed literature study on transport
protocol attacks and identified some common components, or
building blocks, used in many of these attacks. Based on this
study, we defined a set of packet-based basic attacks that we
use to compose attack strategies.

As we do not require access to the source code, our
approach relies on intercepting and modifying or injecting net-
work traffic. We place an attack proxy between one of our test
hosts and the emulated network. This attack proxy intercepts
packets and can apply basic attacks such as influencing the
delivery of packets or modifying the packets flowing through
it. We can also use the proxy to emulate an off-path attacker
that injects new packets into the network.

We detect if an attack was successful or not by comparing
the connection performance under attack with a baseline
generated from a test with no attacks and by checking for
open sockets on the server after the test completes. Attack
strategies that appear successful are tested a second time to
ensure repeatability.

B. Attack Injection

An important aspect of determining an attack search strat-
egy is identifying the attack injection points, that is, the points
where attacks can be inserted into a test run.

Send-packet-based attack injection. One simple approach
is to have the proxy intercept each packet generated by
the client application running in the virtual machine, apply
any basic attacks desired, and forward the packet on to its
destination. This means that an attack injection point occurs
whenever there is a send for a particular packet type.

While this approach is relatively simple and can find
many attacks, it also results in repeatedly performing attacks

that have the same semantics for the protocol, thus resulting
in redundant executions and lengthening the time required
to complete the search. In addition, this approach does not
work well for off-path attackers and fails to find attacks
not connected with packet send events in the code. This is
particularly problematic for transport protocols because many
attacks against connection establishment and tear down fall
into this category.

Time-interval-based attack injection. One approach to
provide support for off-path attackers and finer time granularity
is to divide the running time into fixed intervals and, for each
of these intervals, attempt to inject packets following all basic
attacks. While this approach is also relatively simple, a small
time interval must be used in order to catch many attacks. This
will result in testing thousands of strategies that either do not
inject attacks or inject many redundant attacks, based on the
semantics of the protocol. As a result, this approach also has
a high execution time overhead and can take a very long time
to complete.

Protocol state aware attack injection. Our approach to
eliminate some of the redundant testing scenarios, support
off-path attackers, and provide finer granularity for inject-
ing attacks is to take into account the semantics of the
protocol when injecting attacks. We can obtain information
about the semantics of the protocol from its state machine.
Many transport protocols have well documented state machines
describing their connection lifecycles, and in the absence of
such documentation, work in state machine inference may be
leveraged [20].

We propose a state-based search strategy that leverages sev-
eral characteristics of the protocol state machine to reduce the
attack search space. Specifically, we inject attacks at specific
states in the protocol execution. Because the protocol state
machine defines key points in the operation of the protocol, this
approach allows us to quickly gain wide coverage within the
search space by focusing on each of these states. We also treat
all attack injection points in the same state in the same manner.
This further prunes the number of search paths to be explored.
The motivation behind our approach is that two packets of the
same type received in the same protocol state usually cause
similar results; however, an identical packet received in two
different states may cause significantly different results.

In order to apply our protocol state aware attack injection,
we need a mechanism to infer which protocol state an endpoint
is in. As we do not require access to the source code, we



use packet monitoring to infer the state. This is accomplished
by a state tracking component (see Figure 2) that uses a
description of the protocol state machine supplied by the user.
The state machine provides information about what packets
determine transitions from one state to another. At run time,
the state machine tracker infers changes in the state machines
of each endpoint by observing the packets exchanged and
matching them with the state transition rules. The state tracking
component also keeps track of some basic information about
each observed state, including the packet types observed in
that state.

Note that this strategy assumes that implementations have
correctly implemented the protocol state machine as described
in their specification. Existing work on state machine verifi-
cation [25] could be leveraged to overcome this limitation.
However, the high granularity state machines, describing con-
nection lifecycle, that we use are unlikely to be implemented
incorrectly because of their simplicity and importance to the
protocols. Taking TCP as an example, the state machine
has 11 states in total and all data transfer, and associated
retransmissions and congestion control, takes place in a single
state [26]. A mistake in this state machine has a similar
impact to getting the packet header formats wrong; while
the implementation may work with itself, it will fail simple
interoperability tests.

C. Attack Strategy Generation

Based on the packet types and state machine information,
we automatically generate attack strategies. For each packet
type we generate the basic attacks described below.

We conducted an extensive study of the literature on
transport protocol attacks to develop our basic attacks. All of
these attacks are conducted by our attack proxy at a packet
level, either one packet at a time or considering several packets
together.

Malicious client attacks. The first set of basic attacks we
developed interfere with packet delivery or packet content.
Packet delivery attacks model a malicious client who either
ignores certain packets entirely or who delays processing
packets in order to interfere with the protocol. Packet content
attacks model a malicious client who sends packets that contain
unexpected or invalid values.

We consider the following packet delivery attacks: drop,
duplicate, delay, and batch.

Drop: The attack proxy intercepts and drops a packet with
a given probability specified as a parameter in percent. This
attack may impact many of the core features of transport
protocols from connection establishment to congestion control,
depending on when it is applied.

Duplicate: The attack proxy intercepts a packet and then
sends multiple copies of it to the destination. The number
of duplicates to inject is specified as a parameter. This at-
tack could impact many features of a transport protocol, but
fairness and congestion control are particularly vulnerable.
Acknowledgment duplication, in particular, can cause fairness
problems [11].

Delay: The attack proxy intercepts a packet and then inserts
a delay before sending it on. The delay is specified as a

parameter in seconds. Depending on the length of the delay,
this attack may cause reordering or retransmission situations.
It may also interfere with RTT estimation, which is usually a
key component of retransmission algorithms.

Batch: The attack proxy intercepts packets and waits some
amount of time before sending them all at once. The wait
time is a parameter specified in seconds. This attack is de-
signed to find attacks similar to the Shrew and Induced-Shrew
attacks [9], [8].

We also consider the following packet content manipula-
tion attacks: reflect and lie.

Reflect: The attack proxy intercepts a packet and sends
it back to its originating host. This attack models sending
an unexpected, but potentially valid, packet. It is particularly
likely to disrupt connection establishment and termination.
Consider, for example, the TCP Simultaneous Open Attack
where an attacker responds to a SYN packet with another SYN
packet [7].

Lie: The attack proxy intercepts a packet and modifies a
specified field before sending it on. Modifications supported
include setting particular values, setting random values, or
adding/subtracting/multiplying/dividing the current value by
some factor. The field and the type of modification are pa-
rameters. We use a list of modifications chosen based on the
field-type to be likely to cause unexpected behavior. These
include setting values like 0, the maximum value a field can
handle, and the minimum value a field can handle. This attack
may impact all of the core features of transport protocols from
connection establishment to congestion control, depending on
when and where it is applied.

Off-path attacks. The second set of attacks we developed
are attacks on a connection by an off-path third party. These
attacks spoof packets such that they appear to come from the
client or the server in a target connection. We consider the
following off-path attacks: inject and hitseqwindow.

Inject: The attack proxy injects a new packet into the net-
work. This attack contains a number of parameters describing
the fields in the packet, its source and destination, and when
it should be injected (in seconds from emulation start). Many
parts of a transport protocol may be affected by such an attack,
from reliability to connection tear down.

HitSeqWindow: This attack is very similar to inject. Instead
of injecting just one packet, the attack proxy injects a whole
series of packets with their sequence numbers spanning the
whole possible sequence range. This attack is designed to
look for attacks similar to the Reset and Syn-Reset attacks
on TCP [12], [3].

Note that one can also consider more complex attack
strategies that combine the basic attacks described above into
strategies consisting of sequences of actions. We currently
support only the basic attacks described above.

V. IMPLEMENTATION

In this section, we discuss how we implement SNAKE.
We first present an overview of the whole platform and then
discuss our attack proxy, state tracking, and parallelism in more
detail. See also Figure 2.



Fig. 3. Test Network Topology

A. Overview

We separate the functionality of SNAKE into two compo-
nents: a controller that generates attack strategies and one or
more executors that test the strategies.

The controller generates and selects the attack strategies
based on the packet formats and the state machine transitions
obtained from the protocol specification supplied by the user.
An executor first runs a non-attack test and then, for each
strategy, runs the attack scenario and reports performance
information back to the executor, who determines whether
an attack took place or not. SNAKE uses parallelism to run
multiple executors concurrently and speed up the attack finding
process.

The executor controls the execution of a testing scenario
consisting of a set of four virtual machines each running
an unmodified instance of the protocol under test. These
virtual machines are connected in a dumbbell topology using
a network emulator and tap devices. We use KVM as the
virtualization environment and NS-3 for network emulation.

A dumbbell topology consists of two machines on each
side of a bottleneck link as shown in Figure 3. In our setup,
the two machines on one side act as servers while the two
on the other act as clients. We configured our attack proxy to
be between one of the clients and the bottleneck link. The
other client makes a connection to a server that we refer to as
competing connection, as it will compete with our proxy for
bandwidth on the bottleneck link. This topology allows us to
test both attacks that impact a connection to which the attacker
is a party and attacks where the attacker is an off-path third
party. The first type of attack often represents an attack on
the fairness of the transport protocol or a resource-exhaustion-
based denial of service attack against a server. The second type
of attack often represents an off-path attacker who wishes to
terminate or slow a connection between two other hosts. See
Section III-C and Figure 1 for a more detailed discussion of
these types of attacks.

To determine successful attacks, the controller examines
the performance of the client without the attack proxy (Client
2 in Figure 3) and the number of connections the server
is maintaining at the end of the test. This information is
obtained by the executor. Specifically, the executor calculates
performance as the quantity of data transferred during the test
and queries the OS to determine the number of connections
maintained by the server, for example by using the netstat
command on UNIX-based systems. After the test completes,
the executor sends these metrics to the controller, which
compares the received metrics observed after the tested attack
with the metrics observed in a non-attack test run.

The executor is implemented as a Perl script that listens
for strategies from the controller and then initializes the

virtual machines from snapshots, starts the network emulator,
configures the attack proxy, and starts the test. Once the test
completes, it collects the performance data and any feedback
from the attack proxy and sends this back to the controller.

The controller is implemented in a combination of C and
Perl and is responsible for choosing strategies to execute and
determining attacks based on the performance data returned by
the executor. Instead of generating all of the attack strategies at
once, we implement our controller to generate them a few at a
time in response to feedback about packet types and protocol
states observed by the state tracking component of our attack
proxy. This is equivalent to generating all the strategies at once
but is a little more flexible.

B. Attack Proxy

Our attack proxy intercepts all packets along the ingress
and egress paths in NS-3. We modify NS-3 to allow us to
designate malicious nodes and only intercept packets to or
from those nodes. The interception is done in NS-3’s tap-
bridge module, which connects NS-3 to outside tap-devices
serving the virtual machines.

When the attack proxy receives a packet, it examines it to
determine the protocol. Protocols not of interest are returned
to the tap-bridge for normal processing. For packets of the
target protocol, the type of the packet is examined and the
sender’s protocol state is identified from the state tracking
system. If there is a matching strategy, the basic attack is
performed on the packet. To accomplish this, our proxy needs
a description of the protocol packet header format. We use
a simple language to describe the header structure and then
automatically generate C++ code to parse and modify this
header.

Our malicious proxy is also capable of injecting packets
into the network. Proper packet headers are generated from
the protocol description using our automatically generated C++
protocol processing code, and the resulting packet can then be
sent using standard NS-3 packet send mechanisms.

C. State Tracking

We implement our protocol state machine tracking inside
the attack proxy. The tracker takes a description of the protocol
state machine, written in the dot language [27], as input. This
description contains the state transitions, including the packets
or actions that cause these transitions or result from them. The
use of a standardized graph language like dot to represent the
state machine enables the use of SNAKE on a variety of two-
party protocols simply by swapping out the state machine and
packet header descriptions.

Our state machine tracker watches the packets that pass
through the proxy and uses the state machine transition rules
to infer what state the client and server are currently in. The
state machine tracker also collects some useful statistics about
each state in the protocol. This includes what packet types and
how many packets were sent and received during each state. It
also includes the amount of time the host spent in each state
and the number of times it visited that state. These statistics
are extracted from the attack proxy by the executor at the end
of each test and then sent to the controller along with the
performance information.



D. Parallelism

We have implemented SNAKE as separate controller and
executor modules to enable parallelism. These modules can
even reside on separate systems, as all communication is done
via TCP. Because testing each strategy takes about two minutes
this becomes a highly parallel problem, with linear speedup
limited only by the amount of processing power that can be
thrown at the problem.

Each executor requires significant resources, as it will
start four virtual machines and an NS-3 instance. In prac-
tice, we found that running about one executor for every
six hyperthreads resulted in good performance. The memory
requirements per executor depend primarily on the demands
of the implementation and operating system under test. In our
tests, they ranged around 4-8GB per executor.

Our controller requires little processing power since its
primary responsibility is to identify attacks based on the per-
formance information returned by the executors and to supply
new attack strategies to the executors. In our experiments, we
did not find it necessary to dedicate a core to the controller.

VI. RESULTS

We applied SNAKE to test two protocols and a total of five
transport protocol implementations on four different operating
systems. The two protocols we tested were TCP and DCCP.
For TCP, we tested implementations in Linux 3.0.0, Linux
3.13, Windows 8.1, and Windows 95. For DCCP, we focused
on the implementation in Linux 3.13. We were able to find
attacks on all implementations, including several previously
unknown attacks. We discuss these protocols and present our
findings below, and summarize them in Tables I and II.

All of these tests were run on a hyperthreaded 16 core
Intel R© Xeon R© 2.3GHz system with 94GB of RAM. We ran
five separate executors simultaneously. Testing each imple-
mentation required about 60 hours, but this duration could be
decreased by running more executors.

We define successful attacks as strategies that result in an
increase or decrease in achieved throughput of at least 50%
compared to the non-attack case or that cause the server-
side socket to not be released normally after the connection
is closed. This throughput threshold is based roughly on
the notion that reasonable competition for network flows is
achieving throughput within a factor of two of each other [23],
[24] as well as on experience.

A. TCP

TCP [26] is the most common transport protocol today,
underlying the majority of all Internet traffic. Its goal is to
provide a reliable byte-stream between end hosts. As a result,
it implements reliability, in-order delivery, and flow control.
It also attempts to ensure fairness and prevent congestion
collapse by implementing congestion control.

A TCP connection is started by a handshake between the
two end hosts [26]. This allows both endpoints to inform
each other of their initial sequence numbers and any important
options. A similar handshake is performed at the end of the

connection to make sure that all data has been delivered before
the connection terminates.

Reliability is achieved by using sequence numbers and ac-
knowledgments. The sender assigns a sequence number to each
byte of data and then the receiver acknowledges the highest
consecutive byte of data it has received [26]. Retransmissions
are triggered either by a retransmission timeout (RTO) or
by receiving three duplicate acknowledgments, indicating the
reception of packets above some missing bytes [29].

TCP uses several flags in its header to indicate certain types
of packets. The packets in the initial handshake are marked
with the SYN flag; those in the final handshake with the FIN
flag. Reset packets use the RST flag to abruptly terminate
a connection after an error. An ACK flag indicates a valid
acknowledgment field and is set on every packet after the initial
SYN. An important side-effect of using a set of flags instead
of a single packet-type field is that TCP implementations
have to decide how to handle unusual or nonsensical flag
combinations, for example SYN+FIN+ACK.

TCP congestion control is a complex research area in its
own right; however, the basic scheme is Additive Increase,
Multiplicative Decrease [29] where TCP slowly increases its
sending rate by one packet per RTT in steady state and cuts
the sending rate in half on packet loss.

Testing. We tested TCP in one of its most popular settings.
Specifically, we utilized a large HTTP download with Apache
or IIS running on the servers and wget for clients.

For each of our TCP implementations, SNAKE tried be-
tween five and six thousand strategies and determined that be-
tween 128 and 163 of these (depending on the implementation)
resulted in significant performance degradation or potential for
resource exhaustion. These attack strategies represent around
3% of the tested strategies.

On-path attacks. Some of the attacks we found, while
possible, require an on-path attacker. Strategies like modifying
the source or destination ports or the header size do prevent
a connection from being established, but these strategies are
not possible for off-path attackers and a malicious client
could simply not initiate a connection. These attacks can be
conducted by an on-path attacker. However, as TCP was not
designed to handle such attackers, we are not interested in
these types of attacks.

False positives. We found a few attacks that were false
positive strategies for each implementation. These were related
to the hitseqwindow basic attack. This attack injects numerous
packets in an attempt to get one packet into the sequence
window of a target connection. Unfortunately, the injection of
such a large number of packets tends to slow down the target
connection significantly, irrespective of whether the packets
have any malicious impact. We manually inspect the packet
captures for attacks using this action to determine why an
attack was declared and identify false positives when the
reduced performance is caused by the number of packets
injected, and not by hitting the target sequence window.

Client and off-path attacks. Discarding the false positive
and on-path attacks results in a set of between 17 and 48
(depending on implementation) attack strategies. However,



TABLE I. SUMMARY OF SNAKE RESULTS

Protocol Implementation Strategies Tried Attack Strategies Found On-path Attacks False Positives True Attack Strategies True Attacks

TCP Linux 3.0.0 5994 128 82 5 41 4

TCP Linux 3.13 5717 163 105 10 48 3

TCP Windows 8.1 5549 137 118 2 17 4

TCP Windows 95 5013 147 122 3 22 3

DCCP Linux 3.13 4508 67 27 2 38 3

TABLE II. SUMMARY OF ATTACKS DISCOVERED BY SNAKE

Protocol Attack Description Impact Operating System Known

TCP CLOSE WAIT Resource Exhaustion Connections hang on server if client exits and resets are

dropped

Server DoS Linux 3.0.0 / Linux 3.13 Partially

[28]

TCP Packets with Invalid Flags The handling of invalid flag combinations could allow OS

fingerprinting

Fingerprinting Linux 3.0.0 / Windows 8.1 No

TCP Duplicate Acknowledgment Spoof-

ing

Frequently duplicating acknowledgments causes sender to

increase window faster than normal

Poor Fairness Windows 95 Yes [11]

TCP Reset Attack Brute force a sequence-valid reset Client DoS All Yes [13]

TCP SYN-Reset Attack A sequence-valid SYN causes connection reset Client DoS All Yes [3]

TCP Duplicate Acknowledgment Rate

Limiting

Occasionally duplicating acknowledgments result in indi-

cated loss and connection slow down

Throughput

Degradation

Windows 8.1 No

DCCP Acknowledgment Mung Resource

Exhaustion

Connection will hang waiting for timeouts to empty send

queue if acknowledgments are disrupted

Server DoS Linux 3.13 No

DCCP In-window Acknowledgment

Sequence Number Modification

Connection can be throttled by incrementing sequence num-

ber in an acknowledgment, resulting in a forced resync

Throughput

Degradation

Linux 3.13 No

DCCP REQUEST Connection Termination Any packet except Response received in REQUEST state

results in connection reset

Client DoS Linux 3.13 No

many of these strategies are functionally the same attack,
just performed on a different field or with a different value.
Ultimately, we found a total of six unique attacks, several
of which are effective against multiple implementations. We
discuss each of these attacks in detail below.

1) CLOSE WAIT Resource Exhaustion Attack: This attack
results in connections staying alive on the server in the
CLOSE_WAIT state for tens of minutes after the client closes
them. An attacker can easily initiate hundreds of thousands of
such connections before they begin to expire, likely rendering
the server unavailable.

CLOSE_WAIT is the TCP state that the passive close side
of a TCP connection, usually the server, remains in after
receiving notification of remote close and while waiting for
the local application to close the connection. After the local
close, the connection must remain in this state until a FIN can
be sent.

If a Linux TCP client exits while in the middle of a
data transfer (like an HTTP download), Linux will send a
FIN packet and then not acknowledge any more data on the
connection; any further packets will generate a reset. This is
valid behavior according to the RFC since the application will
never receive this data [26]. If these reset packets are blocked,
it will appear to the sending TCP that the whole in-flight
window of packets was lost, triggering congestion avoidance
and a series of retransmissions that will never succeed.

When the server application eventually closes the TCP con-
nection, TCP will transition to the CLOSE_WAIT state where
it needs to remain until all outstanding data is acknowledged,
including the lost window of packets that were in-flight when
the client exited. These packets will never be acknowledged,
meaning that TCP is stuck in CLOSE_WAIT with (possibly
significant) data queued on the socket. Linux will eventually
force-close a TCP connection due to lack of delivery, but that
requires 15 retries by default, which is between 13 and 30
minutes depending on the RTT [30].

To the best of our knowledge, this attack is unreported in
the research literature. However, system administrators have
been aware of similar problems with connections stuck in
CLOSE_WAIT for many years [28]. SNAKE found this attack
on Linux 3.0.0 and Linux 3.13.

2) Packets with Invalid Flags: Recall that the TCP header
includes several flags that indicate the packet type. Not all
combinations of these flags make sense. For instance, a packet
with SYN+FIN+ACK+RST flags would indicate a packet start-
ing a connection, closing the connection, acknowledging a
packet in the connection, and resetting the connection. This is
clearly a nonsensical combination. One would expect a TCP
implementation to ignore such invalid packets. However, both
Linux 3.0.0 and Windows 8.1 respond to such invalid packets
in an active connection.

Linux 3.0.0 attempts to interpret these nonsensical flag
combinations as best it can. This results in sending a duplicate
acknowledgment in response to a packet with no flags set, a
situation that is never valid. We have also observed Linux 3.0.0
attempting to process SYN+FIN and SYN+FIN+ACK+PSH

packets. Note that Linux 3.13 appears to have fixed these
problems and no longer responds to such invalid packets.

Windows 8.1 will also process and respond to invalid pack-
ets. However, it follows a different approach. If the RST flag
is set, the connection is reset irrespective of what other flags
might also be set. Otherwise, nonsensical flag combinations
are ignored.

Responding to packets with invalid flag combinations is not
by itself a security issue. We have found no instance where
responding to invalid flag combinations achieves something
that is not possible with valid flag combinations. However, a
target’s responses to invalid flag combinations could be used
to fingerprint the particular TCP implementation in use, indi-
cating other possible vulnerabilities to exploit. Further, packets
with invalid flag combinations may be interpreted differently
by end hosts and middleboxes like firewalls and intrusion



detection systems, providing a possible way to subvert such
middleboxes.

3) Duplicate Acknowledgment Spoofing: This is a classic
TCP attack originally discovered by Savage, et al. in 1999 [11].
This attack operates against a naı̈ve TCP implementation
where the sender increases its congestion window for every
acknowledgment received, without checking for duplicates
or checking how much data is currently outstanding in the
network. As a result, a receiver can significantly increase its
achieved throughput by simply acknowledging packets multi-
ple times, thereby increasing the sender’s congestion window
much faster than normal.

This attack requires frequent duplication of acknowledg-
ments to be meaningful, as each acknowledgment only in-
creases the congestion window by a very small amount. In
addition, if acknowledgments are duplicated more than three
times, TCP will react as if a loss occurred, halve its congestion
window, and enter fast recovery. However, in this mode, each
acknowledgment received results in a new packet being sent.
This simplifies the attack by allowing the attacker to control
the sending rate by controlling the acknowledgment rate.

There are mitigations to this attack, including only allowing
the congestion window to be incremented by the number of
data segments outstanding in the network. Another option
would be a nonce in the TCP header and a sender side register
allowing acknowledgment of each nonce only once.

In our tests, SNAKE discovered this attack against Win-
dows 95 and was able to use it to increase a malicious
connection’s throughput by a factor of 5. SNAKE did not find
this attack against any other tested implementation, which is
expected as this attack and its mitigations were well known
by the time they were released.

4) Reset Attack: This attack works by spoofing a large
number of resets for a target connection. If one of these resets
is sequence-valid, the receiving TCP will reset the connection.
The work in [13] showed this attack to be much more practical
than previously supposed by pointing out that a reset packet
anywhere in the receive window is sufficient to reset the
connection. Thus, one could send packets at receive window
intervals, greatly reducing the number of packets required.

In our testing, SNAKE discovered this attack against all of
our TCP implementations. Since this attack utilizes a feature
of the TCP specification itself, all implementations should be
vulnerable. The only thing implementations can do to protect
themselves is to keep their receive window small.

5) SYN-Reset Attack: This attack is very similar to the Re-
set Attack discussed above. In this case, the TCP specification
says that the receipt of a sequence-valid SYN packet on an
active connection should result in the connection being reset.
As a result, an attacker can spoof a large number of SYN

packets at receive window intervals in an attempt to slip one
into the target connection’s sequence window, resulting in a
connection reset. This attack has been known since at least
2009 [3].

In our testing, SNAKE discovered this attack against all of
our TCP implementations. Like the Reset Attack, this attack
utilizes a feature of the TCP specification itself, which makes
it difficult for implementations to protect against.

6) Duplicate Acknowledgment Rate Limiting: Duplicate
Acknowledgment Rate Limiting is a new attack that
SNAKE discovered against Windows 8.1. It operates by dupli-
cating PSH+ACK packets, which occur only occasionally in the
data stream, ten times. This causes duplicate acknowledgments
to be sent to the sender by the receiver. After three duplicate
acknowledgments, the sender halves its congestion window
and retransmits the indicated packet.

So far, this is standard TCP behavior common to all TCP
New Reno implementations. However, for a Windows 8.1
server and a Linux 3.0.0 client, we observe a throughput
degradation of a factor of 5 compared to the competing flow.
Both of the Linux implementations we tested show throughput
consistent with normal TCP competition in this scenario; that
is, approximately fair bandwidth sharing.

B. DCCP

The Datagram Congestion Control Protocol (DCCP) was
designed for applications that wanted congestion control, but
did not want the retransmissions and head-of-line-blocking
associated with TCP [31]. Examples of such applications are
applications that are highly latency sensitive, such as VoIP,
realtime streaming video, and video gaming.

Like TCP, DCCP requires a handshake to setup a connec-
tion and another one to tear the connection down. However,
DCCP uses different types of packets for these handshakes,
instead of a set of flags [31]. Hence, the initial handshake
consists of a REQUEST and a RESPONSE packet while the
final handshake consists of a CLOSE and a RESET packet.

DCCP assigns sequence numbers to packets instead of
bytes. Further, every packet increments the sequence number;
even pure acknowledgments carrying no data [31]. The re-
ceiver acknowledges the highest sequence number received;
since DCCP does not retransmit data, a TCP-like cumulative
acknowledgment does not make sense.

However, this design means that DCCP endpoints can get
out of sync after extended bursts of loss and reject valid packets
as not within the current sequence window. To mitigate this
issue, a third handshake–of SYNC and SYNCACK packets–is
used to exchange the current sequence numbers of both parties
and resynchronize the connection [31].

DCCP also features pluggable congestion control modules,
known as CCIDs. Two are currently standardized: CCID 2,
TCP-like Congestion Control, and CCID 3, TCP-Friendly Rate
Control (TRFC). We focus on CCID 2 in this work. It follows
the TCP SACK congestion control algorithm as closely as
possible [32]. There are several changes in order to handle the
switch from byte-based to packet-based sequence numbers.

Testing. For DCCP testing, we used iperf to measure
throughput. Since DCCP is not a reliable protocol, we mea-
sured performance based on server goodput, or actual data
received. As DCCP is currently only supported on Linux
and is fairly uncommon, we focused our efforts on a single
implementation, the Linux kernel 3.13 implementation.

SNAKE tried just over 4,500 strategies against DCCP.
Of these, it identified 67 candidate strategies that caused
significant performance issues or potential resource exhaustion.
This is about 1.5% of the total strategies tested.



On-path attacks. As with TCP, DCCP was not designed
to be resilient to on-path attacks. Thus, we exclude all on-path
attacks found by SNAKE.

False positives. We also found 2 attacks that were false
positives. As with TCP, these attacks are both hitseqwindow
strategies that attempt to inject packets into a target connec-
tion at sequence window intervals. Injecting this quantity of
packets tends to significantly slow down the competing target
connection, irrespective of any malicious impact of the injected
packets. Thus, these strategies tend to fall below our attack
threshold.

Client and off-path attacks. Discarding the on-path at-
tacks and the two false positives leaves us with 38 strategies
that represent actual attacks. However, many of these strategies
are functionally the same attack, just repeated on different
fields or with different values. Ultimately, we found three
attacks; none of which have been reported in the literature.
We discuss each of these attacks below.

1) Acknowledgment Mung Resource Exhaustion Attack:
This attack is possible because a DCCP sender will not close
a connection until its send queue is empty. This send queue
defaults to 10 packets, but may be much larger for applications
like video streaming. As a result, if a connection’s congestion
control can be persuaded to send at the minimum rate, a
connection can be held in an open-but-useless state for a
very long time. By repeating this process, one can create an
effective resource exhaustion attack that may render the target
host unavailable.

Note that DCCP does not retransmit data. As a result,
while similar attacks against TCP last until TCP gives up
retransmitting a particular packet and resets the connection,
DCCP will continue sending at its minimum rate until the
application and the human trying to use it explicitly close the
connection. Once the application closes the connection, DCCP
will send all queued packets and then close the connection and
free related resources.

There are several ways to convince DCCP’s congestion
control to send at its minimum rate. Most of them work
by invalidating or dropping the acknowledgments from the
receiver. Modifying the sequence or acknowledgment numbers
are very effective because this results in an additional exchange
of SYNC and SYNCACK packets.

2) In-window Acknowledgment Sequence Number Modifi-
cation: This attack targets sequence numbers in the receiver’s
acknowledgment packets. Recall that sequence numbers in
DCCP are per-packet and that every packet increments the
sequence number; even pure acknowledgment packets.

If the sequence number of one of these acknowledgments
is increased, such that it is still sequence valid, the sender
will begin to acknowledge this bad acknowledgment number
in its data packets. However, when the receiver receives these
data packets it will find they acknowledge packets that have
not yet been sent. As a result, it will drop these packets
and send a SYNC in response. The SYNC packet will result
in a SYNCACK packet from the sender, resynchronizing the
sequence numbers and allowing the connection to proceed.
However, by that point an entire window of packets will have
been dropped, resulting in DCCP’s congestion control reducing

the connection’s allowed sending rate. It may even trigger a
timeout and subsequent slow start, assuming DCCP’s CCID 2
congestion control is in use.

To perform this attack, an attacker does not have to be
an endpoint. It suffices to be able to sniff and spoof network
traffic. Such an attacker can inject an acknowledgment with a
slightly higher sequence number and trigger this vulnerability.

3) REQUEST Connection Termination Attack: This attack
is an effective way to terminate a connection during the
connection initiation phase. A client enters the REQUEST state
on initiating a connection, immediately after having sent a
REQUEST packet to the server, and stays in this state until
it receives a RESPONSE packet from the server.

The only valid packets in the REQUEST state are
RESPONSE or RESET; any other packet results in a reset. Note
that both the pseudo-code in RFC 4340 [31] and the Linux 3.13
DCCP implementation perform this packet type check before
checking the sequence numbers. Thus, it is possible to reset a
DCCP connection in the REQUEST state by sending any non-
RESPONSE packet with any sequence and acknowledgment
numbers.

This makes the attack exploitable by anyone who can sniff
and spoof packets. An off-path, third party attacker can launch
this attack, if they can guess the connection initiation time (to
within an RTT) and the source port.

C. Benefits of State-based Strategy Generation

Our state-based strategy generation algorithm enabled us
to find 9 attacks against 2 transport protocols and a total
of 5 implementations. 5 of these attacks were previously
unknown. To accomplish this, we required about 60 hours per
tested implementation. Removing parallelism, this becomes
300 hours of computation per tested implementation.

By contrast, the time-interval-based attack injection ap-
proach discussed in Section IV-B requires trying our malicious
strategies at intervals of 5 microseconds, which is roughly the
amount of time needed to send a minimum sized TCP packet
at 100Mbits/sec. Thus, there are 12 million possible injection
points in a 1 minute test connection. For each of these injection
points, we would have to test about 60 different malicious
strategies resulting from the 8 general malicious actions and
the 13 fields in the TCP header. This results in 720 million
strategies to test.

At 2 minutes to test each strategy, this would require
24 million hours of computation. At an equivalent level of
parallelism, this would take 548 years to complete, which is
clearly impractical.

The send-packet-based attack injection approach is more
practical. A one minute non-attack test with TCP results in the
sending of about 13,000 packets. For each of these packets,
we would need to test about 53 different malicious strategies
for packet manipulation, resulting in a total of 689,000 strate-
gies. This would require 22,967 hours of computation. At an
equivalent level of parallelism, this would take about 191 days.

The send-packet-based attack injection also provides no
support for packet injection attacks modeling third party, off-
path attackers. As a result, it would be impossible to find the
Reset and Syn-Reset attacks using this attack injection model.



VII. CONCLUSION

Transport layer networking protocols form an important
part of the Internet, yet, to date, their testing has been mostly
manual and ad-hoc. This has resulted in a stream of vulner-
abilities stretching back to the 1980’s. To help remedy this
situation, we present SNAKE, a tool to allow systematic testing
of unmodified transport protocol implementations, utilizing
the protocol state machine to reduce the search space. We
demonstrate SNAKE by testing 2 different protocols, TCP and
DCCP, and 5 implementations, including both open-source and
closed-source systems. We found 9 attacks, 5 of which we
believe to be unknown in the literature. SNAKE requires only
a description of the protocol packet headers and protocol state
machine, both readily obtained from protocol specification
documents. We believe SNAKE can contribute to securing the
transport layer of modern network stacks.

ACKNOWLEDGMENT

This material is based in part upon work supported by
the National Science Foundation under Grant Number CNS-
1223834. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the authors
and do not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] G. Lyon, “Nmap,” 2014. [Online]. Available: http://nmap.org/

[2] N. Cardwell, Y. Cheng, L. Brakmo, M. Mathis, B. Raghavan,
N. Dukkipati, H.-k. J. Chu, A. Terzis, and T. Herbert, “Packetdrill:
Scriptable network stack testing, from sockets to packets,” in USENIX
Annual Technical Conference. USENIX, 2013, pp. 213–218.

[3] Centre for the Protection of National Infrastructure, “Security assess-
ment of the transmission control protocol,” Centre for the Protection of
National Infrastructure, Tech. Rep. CPNI Technical Note 3/2009, 2009.

[4] V. Paxson, M. Allman, S. Dawson, W. Fenner, J. Griner, I. Heavens,
K. Lahey, J. Semke, and B. Volz, “Known TCP implementation prob-
lems,” RFC 2525 (Informational), Mar. 1999.

[5] N. Kothari, R. Mahajan, T. Millstein, R. Govidan, and M. Musuvathi,
“Finding protocol manipulation attacks,” in Proceedings of the ACM

SIGCOMM 2011 Conference. ACM, 2011, pp. 26–37.

[6] H. Lee, J. Seibert, E. Hoque, C. Killian, and C. Nita-Rotaru, “Turret:
A platform for automated attack finding in unmodified distributed
system implementations,” in IEEE 34th International Conference on

Distributed Computing Systems (ICDCS). IEEE, 2014, pp. 660–669.

[7] B. Guha and B. Mukherjee, “Network security via reverse engineering
of TCP code: Vulnerability analysis and proposed solutions,” IEEE

Network, vol. 11, no. 4, pp. 40–48, 1997.

[8] V. Kumar, P. Jayalekshmy, G. Patra, and R. Thangavelu, “On remote
exploitation of TCP sender for low-rate flooding denial-of-service
attack,” IEEE Communications Letters, vol. 13, no. 1, pp. 46–48, 2009.

[9] A. Kuzmanovic and E. Knightly, “Low-rate TCP-targeted denial of
service attacks and counter strategies,” IEEE/ACM Transactions on
Networking, vol. 14, no. 4, pp. 683–696, 2006.

[10] R. Morris, “A weakness in the 4.2 BSD unix TCP/IP software,” AT&T
Bell Leboratories, Tech. Rep., 1985.

[11] S. Savage, N. Cardwell, D. Wetherall, and T. Anderson, “TCP conges-
tion control with a misbehaving receiver,” ACM SIGCOMM Computer

Communication Review, vol. 29, no. 5, p. 71, Oct. 1999.

[12] J. Touch, “Defending TCP against spoofing attacks,” RFC 4953 (Infor-
mational), Jul. 2007.

[13] P. Watson, “Slipping in the window: TCP reset attacks,” CanSecWest,
Tech. Rep., 2004. [Online]. Available: http://bandwidthco.com/
whitepapers/netforensics/tcpip/TCPResetAttacks.pdf

[14] G. Banks, M. Cova, V. Felmetsger, K. Almeroth, R. Kemmer, and
G. Vigna, “SNOOZE: Toward a Stateful NetwOrk prOtocol fuzZEr,”
in Information Security Conference, ser. Lecture Notes in Computer
Science, S. Katsikas, J. Lopez, M. Backes, S. Gritzalis, and B. Preneel,
Eds., vol. 4176. Springer, 2006, pp. 343–358.

[15] H. J. Abdelnur, R. State, and O. Festor, “KiF: A stateful SIP fuzzer,” in
Proceedings of the 1st International Conference on Principles, Systems
and Applications of IP Telecommunications, ser. IPTComm ’07. ACM,
2007, pp. 47–56.

[16] J. Wang, T. Guo, P. Zhang, and Q. Xiao, “A model-based behavioral
fuzzing approach for network service,” in Third International Confer-

ence on Instrumentation, Measurement, Computer, Communication and

Control (IMCCC). IEEE, 2013, pp. 1129–1134.

[17] P. Tsankov, M. T. Dashti, and D. Basin, “SECFUZZ: Fuzz-testing
security protocols,” in 7th International Workshop on Automation of
Software Test (AST), 2012, pp. 1–7.

[18] C. Y. Cho, D. Babic, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song,
“MACE: Model-inference-assisted concolic exploration for protocol and
vulnerability discovery,” in USENIX Security Symposium. USENIX,
2011.

[19] H. Guo, M. Wu, L. Zhou, G. Hu, J. Yang, and L. Zhang, “Practical soft-
ware model checking via dynamic interface reduction,” in Proceedings

of the Twenty-Third ACM Symposium on Operating Systems Principles,
ser. SOSP ’11. ACM, 2011, p. 265.

[20] Y. Wang, Z. Zhang, D. D. D. Yao, B. Qu, and L. Guo, “Inferring
protocol state machine from network traces: A probabilistic approach,”
in Proceedings of the 9th International Conference on Applied Cryp-
tography and Network Security, ser. ACNS’11. Springer-Verlag, Jun.
2011, pp. 1–18.

[21] J. C. King, “Symbolic execution and program testing,” Communications
of the ACM, vol. 19, no. 7, pp. 385–394, 1976.

[22] J. Postel, “User datagram protocol,” RFC 768 (Standard), Aug. 1980.

[23] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “TCP friendly
rate control (TFRC): Protocol specification,” RFC 5348 (Proposed
Standard), Sep. 2008.

[24] J. Widmer and M. Handley, “TCP-friendly multicast congestion control
(TFMCC): Protocol specification,” RFC 4654 (Experimental), Aug.
2006.

[25] M. Musuvathi and D. R. Engler, “Model checking large network
protocol implementations,” in Proceedings of the 1st Symposium on Net-

worked Systems Design and Implementation, ser. NSDI’04. USENIX
Association, 2004, pp. 155–168.

[26] J. Postel, “Transmission control protocol,” RFC 793 (Standard), Sep.
1981.

[27] E. Gansner, E. Koutsofios, and S. North, “Drawing graphs with dot,”
2006. [Online]. Available: http://www.graphviz.org/Documentation/
dotguide.pdf

[28] WebHosting Talk, “DOS attack – hosting security and
technology,” 2004. [Online]. Available: https://www.webhostingtalk.
com/showthread.php?t=293069

[29] M. Allman, V. Paxson, and E. Blanton, “TCP congestion control,” RFC
5681 (Draft Standard), p. 18, Sep. 2009.

[30] O. Andreasson, “TCP variables,” 2002. [Online]. Available: https:
//www.frozentux.net/ipsysctl-tutorial/chunkyhtml/tcpvariables.html

[31] S. Floyd, M. Handley, and E. Kohler, “Datagram congestion control
protocol (DCCP),” RFC 4340 (Proposed Standard), 2006.

[32] S. Floyd and E. Kohler, “Profile for datagram congestion control
protocol (DCCP) congestion control ID 2: TCP-like congestion control,”
RFC 4341 (Proposed Standard), 2006.


