
Performance Analysis of the Datagram Congestion Control Protocol DCCP for Real-Time

Streaming Media Applications

A thesis presented to

the faculty of

the Russ College of Engineering and Technology of Ohio University

In partial fulfillment

of the requirements for the degree

Master of Science

Samuel C. Jero

August 2013

© 2013 Samuel C. Jero. All Rights Reserved.

2

This thesis titled

Performance Analysis of the Datagram Congestion Control Protocol DCCP for Real-Time

Streaming Media Applications

by

SAMUEL C. JERO

has been approved for

the School of Electrical Engineering and Computer Science

and the Russ College of Engineering and Technology by

Shawn D. Ostermann

Associate Professor of Computer Science

Dennis Irwin

Dean, Russ College of Engineering and Technology

3

Abstract

JERO, SAMUEL C., M.S., August 2013, Computer Science

Performance Analysis of the Datagram Congestion Control Protocol DCCP for Real-Time

Streaming Media Applications (180 pp.)

Director of Thesis: Shawn D. Ostermann

The growth of real-time, streaming media application traffic in the Internet presents a

number of challenges because the real-time constraints and interactive nature of these

applications render the use of TCP ineffective. These streaming media application flows

are usually high bandwidth and long duration, which means they should utilize network

congestion control to avoid congestion collapse and ensure fairness. The Internet

Engineering Task Force (IETF) developed the Datagram Congestion Control Protocol

(DCCP) to provide congestion control for these types of real-time applications. A major

factor behind this effort was the desire to eliminate the duplication of effort and potential

for error resulting from each application implementing its own congestion control.

In this research, we examine the difference in network performance and video quality

for a typical application, a high bandwidth video telephony client, when using DCCP

instead of the default transport protocol. We discuss several challenges to porting an

application to DCCP and then examine the impact of DCCP on network and application

performance in both testbed and Internet environments. We show that DCCP responds to

changing network conditions within a few round trip times and provides better fairness to

other network traffic than typical real-time, streaming media congestion control methods.

Given fair bandwidth allocation, DCCP provides equivalent or better video quality, as

measured by Peak Signal to Noise Ratio (PSNR) and Structural Similarity (SSIM).

4

Soli Deo gloria

5

Acknowledgments

I would like to thank my advisor, Dr. Shawn Ostermann, for his guidance in this

thesis work and suggestions when things became difficult. The opportunity to work in his

Internetworking Research Group the past three years, providing me with invaluable

experience and financial support, has also been greatly appreciated.

Dr. Hans Kruse, my unofficial second advisor, deserves a special thanks for his

advice and support. His knowledge of VoIP and media streaming was invaluable in getting

started in this research.

Thanks also to my labmates, James Swaro, Zack Sims, and Joshua Schendel, for their

help and support. It has been great having someone to bounce ideas off of and discuss

research issues with.

A final thanks to my family and friends for their encouragement and support and for

providing me an escape from my thesis in times of frustration or after untold hours of

work. Our conversations about topics totally unrelated to this thesis have been incredibly

valuable in enabling me to keep going and complete this work.

6

Table of Contents

Page

Abstract . 3

Dedication . 4

Acknowledgments . 5

List of Tables . 8

List of Figures . 9

1 Introduction . 12
1.1 Real-time Streaming Media Applications 12
1.2 Congestion Collapse and Fairness . 14
1.3 The Transmission Control Protocol . 16
1.4 The User Datagram Protocol . 18
1.5 The Datagram Congestion Control Protocol 19
1.6 Research Aims . 21
1.7 Thesis Structure . 21

2 Background . 23
2.1 Media Encoding and Encapsulation . 23

2.1.1 MPEG-4 Video . 23
2.1.2 The Real-Time Transport Protocol 27

2.2 Congestion Control . 31
2.2.1 SACK TCP . 31
2.2.2 RTP-Based Congestion Control 34
2.2.3 DCCP Congestion Control . 37

2.2.3.1 CCID 2: TCP-Like Congestion Control 37
2.2.3.2 CCID 3: TCP-Friendly Rate Control 40

2.3 Literature Review . 42
2.3.1 Performance of MPEG-4/RTP Streaming 42
2.3.2 DCCP Performance . 45

3 Experimental Setup . 49
3.1 Linphone . 49

3.1.1 Architecture . 50
3.1.2 Modifications . 51

3.2 Application Considerations for DCCP . 53
3.2.1 Socket Queues . 54

7

3.2.2 Feedback to Application . 55
3.2.3 Codec Rate Adjustment . 57

3.3 The Linux Kernel DCCP Implementation 58
3.4 Video Quality Analysis . 60

3.4.1 Peak Signal to Noise Ratio . 61
3.4.2 Structural Similarity . 62

3.5 Experiment Configuration . 64
3.5.1 Test Video Clips . 64
3.5.2 Testbed Configuration . 69
3.5.3 Short Distance Internet Configuration 71
3.5.4 Long Distance Internet Configuration 72

4 Results and Discussion . 73
4.1 Testbed Experiments . 73

4.1.1 Movie Clip . 73
4.1.2 Videoconference Clip . 85

4.2 Short Distance Internet Experiments . 94
4.2.1 Movie Clip . 94
4.2.2 Videoconference Clip . 101

4.3 Bitrate Adjustment Interval Analysis . 106
4.3.1 Long Distance Internet Experiments 110
4.3.2 Testbed Experiments . 114

4.4 Long Distance Internet Experiments . 118
4.4.1 Movie Clip . 118
4.4.2 Videoconference Clip . 127

5 Conclusions and Future Work . 134
5.1 Conclusions . 134
5.2 Future Work . 137

References . 140

Appendix A: Linphone Modifications . 151

Appendix B: DCCP CCID 3 Patch . 180

8

List of Tables

Table Page

4.1 Packet Statistics for our Movie Clip in our Testbed Environment 79
4.2 Frame Statistics for our Movie Clip in our Testbed Environment 79
4.3 Frame Statistics for our Videoconference Clip in our Testbed Environment . . . 91
4.4 Packet Statistics for our Movie Clip in the Short Distance Internet Environment 96
4.5 Network Parameters for Long Distance Internet Environment 123
4.6 Packet Statistics for our Videoconference Clip in the Long Distance Internet

Environment . 131

9

List of Figures

Figure Page

3.1 Comparison of images with different types of distortion and identical PSNR
values . 63

3.2 Bandwidth utilization for the first five minutes of our test clips in an
unconstrained environment with no competition 66

3.3 Video complexity of the first five minutes of our test clips using the ITU-T
P.910 video complexity metrics . 68

3.4 Our testbed environment . 69

4.1 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by PSNR, for our movie clip in our testbed environment . 74

4.2 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by SSIM, for our movie clip in our testbed environment . . 75

4.3 Examples of the quality implied by different PSNR and SSIM values from
movie clip . 76

4.4 Examples of visual artifacts resulting from packet loss 77
4.5 Throughput achieved by UDP, CCID 2, and CCID 3 over our 12 minute movie

clip in the testbed environment . 82
4.6 More detailed look at the variation in throughput of UDP, CCID 2, and CCID 3

using our movie clip in our testbed environment 83
4.7 Average fairness of UDP, CCID 2, and CCID 3 to TCP over our 12 minute

movie clip in the testbed environment . 84
4.8 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by PSNR, for our videoconference clip in our testbed
environment . 86

4.9 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by SSIM, for our videoconference clip in our testbed
environment . 87

4.10 Examples of the quality implied by different PSNR and SSIM values from
videoconference clip . 88

4.11 Throughput achieved by UDP, CCID 2, and CCID 3 over our 5 minute
videoconference clip in the testbed environment 90

4.12 More detailed look at the variation in throughput of UDP, CCID 2, and CCID 3
using our videoconference clip in our testbed environment. 90

4.13 Average fairness of UDP, CCID 2, and CCID 3 to TCP over our 5 minute
videoconference clip in the testbed environment 92

4.14 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by PSNR, for our movie clip in the short distance Internet
environment . 95

10

4.15 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by SSIM, for our movie clip in the short distance Internet
environment . 96

4.16 Bitrate requested from the video encoder by linphone as a result of feedback
from CCID 2 in a representative experiment 97

4.17 Bitrate requested from the video encoder by linphone as a result of feedback
from CCID 3 in a representative experiment 99

4.18 Round trip times experienced by a sample CCID 3 connection while streaming
our movie clip through the short Internet environment 100

4.19 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by PSNR, for our videoconference clip in the short
distance Internet environment . 102

4.20 Average cumulative distribution functions of UDP, CCID 2, and CCID 3
video quality, as measured by SSIM, for our videoconference clip in our short
Internet environment . 103

4.21 Average fairness of UDP to TCP while streaming our videoconference clip in
the short distance Internet environment . 104

4.22 Throughout of representative CCID 2 and CCID 3 flows while streaming our
videoconference clip in the short distance Internet environment 105

4.23 Requested bitrate oscillations in a DCCP CCID 2 connection with no bitrate
update interval and high round trip time variation in the long distance Internet
environment . 107

4.24 Round trip time for a DCCP CCID 2 connection in our long distance Internet
environment that exhibits very poor streaming performance 108

4.25 Average cumulative distribution functions of video quality, as measured by
PSNR, for CCID 3 using various bitrate update intervals and our movie clip in
the long distance Internet environment . 111

4.26 Average cumulative distribution functions of video quality, as measured by
PSNR, for CCID 2 using various bitrate update intervals and our movie clip in
the long distance Internet environment . 113

4.27 Average cumulative distribution functions of video quality, as measured by
PSNR, for CCID 3 using various bitrate update intervals and our movie clip in
the testbed environment . 115

4.28 Average cumulative distribution functions of video quality, as measured by
PSNR, for CCID 2 using various bitrate update intervals and our movie clip in
the testbed environment . 117

4.29 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by PSNR, for our movie clip in the long distance Internet
environment . 119

4.30 Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video
quality, as measured by SSIM, for our movie clip in the long distance Internet
environment . 119

4.31 Example video frames with various PSNR and SSIM values from movie clip . . 120

11

4.32 Average cumulative distribution functions of the video bitrate requested by
linphone when using UDP, CCID 2, or CCID 3 while running tests with our
movie clip in the long distance Internet environment 122

4.33 Average fairness of UDP, CCID 2, and CCID 3 to TCP over our 12 minute
movie clip in the long distance Internet environment 125

4.34 Average cumulative distribution functions for UDP, CCID 2, and CCID 3
received video quality, as measured by PSNR, for our videoconference clip
in the long distance Internet environment . 128

4.35 Average cumulative distribution functions for UDP, CCID 2, and CCID 3
received video quality, as measured by SSIM, for our videoconference clip
in the long distance Internet environment . 128

4.36 Example frames with PSNR and SSIM values from videoconference clip 129
4.37 Example of the visual artifacts resulting from UDP packet loss in our

videoconference clip in the long distance Internet environment 130
4.38 PSNR versus time for representative experiments with our videoconference

clip over UDP, CCID 2, and CCID 3 in the long distance Internet environment . 132

12

1 Introduction

1.1 Real-time Streaming Media Applications

The usage of real-time, interactive, streaming media applications, such as VoIP,

videoconferencing, telepresence, and remote musical collaboration, over the global

Internet is growing. This growth presents a unique challenge to the stability of the Internet

because of the particular characteristics of these applications, the most distinctive of

which is their real-time interactivity.

Most of these applications are used for two way communication between people,

either for conversations or other forms of collaboration. Research has shown that latencies

of 150ms are annoying for normal conversation and latencies above 300ms become

intolerable [Per99]. Musical collaboration has even tighter latency requirements [Con12].

These requirements place severe constraints on these systems in general, affecting

everything from the choice of audio/video codec to the amount of data that can be buffered

at the receiver. Further, these low latency requirements make recovery of lost data by

retransmission ineffective in many cases. Packets in these applications usually comprise

timeslices of the content. Once one timeslice has been played, the next one is needed

immediately. If it is unavailable, playback pauses until the next play-able timeslice. By

the time a packet is sent, its loss detected, a request for retransmission sent, and the packet

resent, the time for that packet to be played will have passed in all but the lowest-latency

networks.

Another important characteristic of these applications is that they use a significant

amount of bandwidth. This will only increase as high definition video becomes more

common. Skype, a common VoIP/videoconferencing application, recommends a

connection speed of 500kbits/sec to 1.5Mbits/sec for video calls [Sky13]. Another

VoIP/videoconferencing application, linphone, uses 4-8Mbits/sec when transmitting HD

13

video. Cisco’s TelePresence system requires 1-4Mbits/sec per video stream, depending on

quality [Cis13]. Remote musical collaboration applications often demand even more

bandwidth because they usually dispense with complex audio and video compression in

order to reduce latency. The LOLA system requires between 100Mbits/sec and

500Mbits/sec depending on configuration [Con12]. Such high bandwidth connections are

particularly likely to saturate network links, causing problems both for themselves and for

other connections.

The length of typical connections established by real-time, streaming media

applications is also an important factor. Unlike the short connections used by email and

web page requests, these applications usually send a continuous stream of data that lasts

for minutes or hours. Given the high bandwidth requirements of these applications and

their long duration flows, they are particularly likely to overload network links for long

periods of time, causing significant problems for other users of the network.

A final important feature of these applications is their bursty data streams. These

streams are bursty because they by transmit data in large chunks, or bursts, at regular

intervals. Video, for example, is transmitted in frames that are spaced between 30 and

40ms apart, depending on the frame rate. Audio samples are similarly grouped together

and sent in small chunks every 10-40ms [WW08]. This is in sharp contrast to web pages,

emails, and file transfers where the entire transfer is available at once to be sent as fast as

possible. These regular bursts of data, particularly bursts of numerous packets resulting

from large video frames, can play havoc on router queues, causing overflow immediately

after a burst even if the network may be able to handle the application’s average

throughput.

In addition, the sizes of these chunks can vary significantly, introducing a second

level of burstiness. This is particularly true for video because most compression

algorithms utilize several different types of frames with sizes that can vary by a factor of

14

four or more [Int02a]. Even within a single frame type, the size can vary dramatically

depending on the complexity of the video frame being encoded. The same is true for

audio data [Int02c].

Interestingly, augmented reality systems and online gaming share many of these same

characteristics, especially the real-time, interactive nature of the data being sent. Such

data streams are also likely to be bursty and long duration. If video or texture data is being

transmitted, high bandwidth is also likely. Although this work does not directly address

such systems, many of the ideas discussed here may also be relevant for these areas.

As a result of the characteristics of real-time, streaming media applications

mentioned above, many of the existing networking protocols perform inadequately for

these applications. To understand why this is the case, one needs to understand the

concept of network congestion.

1.2 Congestion Collapse and Fairness

Computer networks are subject to a phenomenon known as network congestion that

occurs when computer networks become over-subscribed, causing router queues to fill up

and packets to be dropped. Adding additional traffic to the network at this point does not

result in an increase in overall throughput and may, in fact, result in a decrease.

If this condition is not corrected, congestion collapse, where the network spends most

of its time sending data that will later be discarded, can occur. This results in drastic

throughput reductions in the affected network. When this occurred on the Internet in 1986,

throughput was reduced from 32Kbits/sec to 40bits/sec [Jac88], a decrease of three orders

of magnitude.

Jacobson [Jac88] observed this issue and introduced several new algorithms into TCP

to recognize congestion and slow down appropriately. These algorithms continue to form

15

the basis of TCP’s congestion control scheme to this day. We will discuss these

algorithms, in their modern form, in chapter 2.

These improvements to TCP eliminated the congestion problems on the Internet at

the time. However, the presence of non-congestion controlled traffic (i.e. traffic that is not

responsive to indications of congestion) on the Internet continues to be a matter of

concern [Flo00, FF99, FHK06b]. Were such traffic flows to make up a significant fraction

of traffic on the Internet, congestion collapse could easily occur.

Another closely related issue is fairness. This is the idea that applications should

share the available network bandwidth fairly. No application should be able to monopolize

the network to the detriment of others. Because TCP is the dominant protocol in today’s

Internet, fairness with TCP is particularly important [FF99]. In general, the Internet

community has understood reasonable fairness between two flows as being able to

maintain throughput rates that are within a factor of two of each other [WH06, FHPW08].

Unfairness between congestion controlled and non-congestion controlled traffic is a

major issue. When congestion controlled applications compete with non-congestion

controlled applications, the non-congestion controlled applications often come to

dominate because the congestion controlled applications will slow down in response to

congestion, effectively ceding bandwidth to the non-congestion controlled flows [Flo00].

Real-time, streaming media flows are both high bandwidth and long duration, and,

therefore, it is particularly important for them to be responsive to congestion and

reasonably fair with other traffic. The high bandwidth demands of these applications make

them particularly likely to overload the network causing congestion, possibly to the point

of congestion collapse, or to steal bandwidth from congestion controlled flows causing

significant unfairness. While this behavior might be tolerable for very short data flows,

typical real-time, streaming media application flows last for minutes or hours.

16

In addition, the bursty behavior of these flows can lead to more undesirable

behaviors. Bursty flows can induce packet loss at routers by temporarily filling the router

queue with a burst of packets. Other network traffic arriving immediately following such a

burst will then experience loss and, if congestion controlled, will slow down. In reality,

however, the network is not congested, and the burst of packets will drain from the router

queue in a few milliseconds, leaving unutilized network bandwidth.

Designing and implementing congestion control algorithms is difficult, and there is a

long history of bad designs and incorrect implementations [Flo00, FHK06b]. For that

reason, a networking protocol for use with real-time, streaming media applications would

ideally provide built-in congestion control so that the application programer is not

required to design their own scheme.

We now consider several common networking protocols and examine their suitability

for real-time, streaming media applications.

1.3 The Transmission Control Protocol

The Transmission Control Protocol (TCP) was defined in 1981 as RFC 793 [Pos81]

and has become by far the most popular networking protocol on the Internet today,

underlying the web, email, instant messaging, and file transfer, among other applications.

TCP offers applications reliable, in-order transmission of a byte-stream from one endpoint

to the other.

In order to accomplish these goals, TCP numbers each byte of data and includes a

sequence number on each packet indicating the position of the first byte of this packet in

the data stream. Also present in each packet is an acknowledgement number that indicates

the next byte of data expected from the other side [Pos81]. These sequence numbers allow

TCP to determine what data has been lost in order to be able to retransmit it. They also

17

enable the data to be presented to the receiving application in the same order it was sent,

even in the presence of network reordering.

TCP provides bidirectional connections between communicating applications and

initializes these connections using a three-way handshake at the start of the connection.

This serves to initialize the sequence numbers that will be used by each side [Pos81].

Once the connection is established, TCP sends data as allowed by its congestion control

and the receiver. This takes the form of a sliding window containing the data that TCP is

allowed to send. Acknowledgements from the receiver move this window forward as sent

data is acknowledged. The size of this window is controlled by TCP’s congestion control

and the receiver and determines the throughput of the connection [APB09]. A final

handshake of FIN packets terminates a connection [Pos81].

TCP has two methods for retransmitting lost data. The first is the retransmission

timeout (RTO). The RTO timer is reset every time TCP sends a packet or receives an

acknowledgment. If this timer expires, TCP assumes that the packet immediately above

the cumulative acknowledgement has been lost and retransmits it. This timer is set for the

current round trip time plus four times the round trip time variance, or a minimum of one

second [PACS11].

Because TCP’s acknowledgement number is cumulative, the sliding window will not

advance beyond a missing packet until the data has been retransmitted and received

correctly. This makes retransmissions very expensive because, by the time the

retransmission timer expires, TCP will have sent its whole window of data and have been

idle for at least a round trip time. Before any new data can be sent, an additional round trip

time will pass while the lost packet is retransmitted. This situation is known as head of

line blocking.

To reduce the cost of retransmissions, another mechanism known as fast retransmit

was introduced. If a sending TCP receives three duplicate acknowledgments in a row, it

18

assumes that the indicated data is missing and retransmits that packet without waiting for

the transmission timer to expire [APB09].

TCP is not very well suited for real-time, streaming media applications because most

of these applications would prefer that lost data not be retransmitted at all. These

applications operate under very tight latency constraints and are not likely to have buffered

a full round trip’s worth of data. By the time the triple duplicate acknowledgement occurs,

the data is retransmitted, and the retransmission arrives at the receiver, the time for that

data to be displayed will most likely have passed [FHK06b].

Head of line blocking is an even worse issue for these applications. Having to wait a

full second until the retransmission timer expires and then wait another round trip time

before new data can begin flowing is completely unacceptable.

As a result, real-time, streaming media applications do not use TCP, even though it

provides convenient, well-tested congestion control.

1.4 The User Datagram Protocol

The User Datagram Protocol (UDP) was defined in 1980 as RFC 768 [Pos80]. It is

heavily used for DNS [Moc87] and other applications that need to send single, short

messages to other hosts and receive short responses in reply, and which can handle

retransmitting these messages themselves.

UDP offers applications a simple method for transmitting datagrams to another

endpoint. It does not guarantee the reliability of these datagrams nor that they arrive in the

order in which they were sent [Pos80].

Because UDP lacks the retransmission mechanisms of TCP and their associated

latency issues, streaming media applications tend to use UDP as their network

transport [CCZ03, CGL+01]. However, UDP lacks a mechanism for congestion control,

which means that such applications are left to implement their own congestion control

19

algorithms as best they can—or simply ignore congestion control altogether. Many

applications use the RTCP protocol, discussed in detail in section 2.1.2, to obtain

information on lost packets and the current round trip time, but this still requires the

application to implement a congestion control algorithm based on this information.

Obviously, this is far from an optimal solution.

1.5 The Datagram Congestion Control Protocol

Recognizing the absence of a protocol to provide congestion control for unreliable

traffic, the IETF developed the Datagram Congestion Control Protocol (DCCP) in 2006 as

RFC 4340 [FHK06a]. This protocol allows an application to send an unreliable stream of

datagrams to an endpoint in a congestion controlled manner. It also offers a selection of

congestion control mechanisms.

DCCP numbers each datagram using a 48-bit sequence number. Most datagrams also

include an acknowledgement number informing the other side what data has been

received. Unlike TCP, this acknowledgement number is not cumulative; it simply

indicates the highest sequence number received without implying anything about the

reception of packets with lower sequence numbers [FHK06a]. Additional DCCP options

can be used if a more detailed understanding of packet reception is desired. Also unlike

TCP, every packet increments the sequence number, even pure acknowledgements. This

enables the detection of reverse path congestion [FHK06a].

DCCP forms bi-directional connections between hosts using a three-way handshake

similar to TCP’s. The handshake enables initial synchronization of sequence numbers as

well as the selection of a congestion control algorithm and other options. Once the

connection is established, DCCP transmits datagrams as allowed by its congestion control.

At least once a round trip time, acknowledgements are received and processed by the

congestion control algorithm to provide information about current network conditions.

20

DCCP does not retransmit lost data nor does it guarantee in-order delivery of datagrams.

Acknowledgements are used purely for congestion control. To terminate a DCCP

connection, a handshake of CLOSE and RESET packets is performed [FHK06a].

DCCP includes a highly extensible option mechanism. Options can take up the entire

packet and are specified as type-length-value fields. Available options include an ack

vector option, which is similar to a TCP SACK block, timestamp, timestamp echo, and

elapsed time options, which can be used for improved round trip time

measurement [FHK06a]. All of these options are designed to gain a more detailed

understanding of what is occurring in the network.

DCCP was also designed to take advantage of Explicit Congestion Notification

(ECN) [RFB01] by default [FHK06a]. ECN enables routers to set a bit in the IP header

indicating that they are congested. Receivers then echo this information back to the sender,

providing an indication of congestion before any data is actually dropped [RFB01].

In order to cater to a wide variety of applications, DCCP offers pluggable congestion

control modules, or CCIDs (Congestion Control IDs). Two are standardized at the

moment, with a few other experimental CCIDs in development. CCID 2 offers congestion

control that is very similar to TCP’s congestion control algorithm while CCID 3 is an

implementation of TCP-Friendly Rate Control (TFRC) [FHK06a]. TRFC is designed for

applications that desire reduced fluctuations in sending rate compared to TCP [FHPW08].

We examine these two algorithms in more detail in Chapter 2.

DCCP seems uniquely well suited to the needs of real-time, streaming media

applications since it provides congestion control without reliability. This frees the

application programmer from having to design and debug a congestion control algorithm

and eliminates the retransmissions and head of line blocking that come with reliability in

TCP. In addition, DCCP’s pluggable congestion control system enables the selection of a

21

congestion control scheme that best suits these real-time, streaming applications or the

development of a new scheme if no effective scheme currently exists.

1.6 Research Aims

Since DCCP appears to be particularly well suited for real-time, streaming media

applications, we would expect it to provide distinct performance advantages over

application level congestion control schemes. However, an examination of the small body

of literature on DCCP shows a focus on DCCP’s fairness with TCP

[GDW06, LL08, TKI+05] and performance in satellite [NHG10, SBJL08, SLB07] or

wireless networks [CMY09, LLA+04, NAT06]. Very little attention has been given to how

real-time, streaming media applications perform when using DCCP.

As a result, this thesis evaluates the performance of DCCP for real-time, streaming

media applications. We utilize a real VoIP/videoconferencing application,

linphone [Lin13], which has been modified to support DCCP. This enables examination of

the interactions between the video codec and DCCP’s congestion control as well as

analysis of what is required to migrate such an application to DCCP. Further, using a real

application ensures that the intricacies of real application behavior are considered.

Tests are conducted both in a testbed environment and over several Internet paths

spanning the majority of the United States. Both the network traffic behavior and the

quality of the video stream transmitted by the application is examined and compared with

results obtained using UDP for network transport.

1.7 Thesis Structure

The remainder of this thesis is organized as follows. Chapter 2 gives background into

streaming media and congestion control and reviews the relevant literature. Chapter 3

discusses the experimental setup and important considerations for applications using

22

DCCP. Chapter 4 presents and analyzes the results of the experiments, and chapter 5

presents our conclusions.

23

2 Background

This chapter provides background on real-time, streaming media applications,

particularly the commonly utilized MPEG-4 media format and Real-time Transport

Protocol (RTP). It also examines a variety of congestion control algorithms, including

SACK TCP congestion control, DCCP’s CCID 2 and CCID 3 algorithms, and one

example of an application level congestion control scheme for real-time, streaming media

applications. Finally, the literature on DCCP and video streaming using MPEG-4 and RTP

is discussed.

2.1 Media Encoding and Encapsulation

Much work has gone into the development of audio and video coding formats for use

in real-time, streaming media applications. Suitable formats need to be low bandwidth,

low latency, high quality, and error tolerant. The development of such formats is no easy

task.

The audio and video formats standardized as MPEG-4 are particularly well suited for

streaming media because of the media quality achieved at lower bitrates and have become

very popular in streaming media applications [GMM04, WHZ+00, LM03]. They are

discussed in detail in the next section both because they are generally representative

formats and because they are some of the most common formats in use today. The

real-time, streaming media application we utilize in this work makes use of MPEG-4 for

its video streaming.

2.1.1 MPEG-4 Video

The MPEG-4 standard, officially known as ISO/IEC 14496, was developed by the

Moving Pictures Experts Group of the International Standards Organization around

1999 [Int02c]. It was designed to provide a flexible method for multimedia content

24

storage and delivery, with particular emphasis on streaming across the Internet. This

multimedia content can include audio, video, animations, still images, and text, in any

combination [Int02c].

Unlike the previous MPEG-1 and MPEG-2 standards, and most other formats,

MPEG-4 doesn’t just provide an algorithm for encoding and storing audio and/or

rectangular video data. Instead, MPEG-4 defines a variety of primitive objects, like audio,

video, and text, that can be composed into scenes [Int01]. These scenes can even be

dynamically manipulated during a multimedia presentation; either programmatically or by

viewer interaction. To complement this design, MPEG-4 also allows images and video

streams to be arbitrarily shaped [Int02a].This enables the foreground and background of a

video clip to be separate video streams that may use different quantization parameters or

frame rates, enabling lower bitrates to produce higher quality.

The MPEG-4 standard is organized into a number of parts (30, as of this writing)

each dealing with a particular component of the standard. The first three parts form the

core of the standard and describe the basic structures underlying MPEG-4 streams as well

as audio and video encoding [Mov13]. Many of the other parts deal with conformance

testing, reference implementations, or various specialty extensions [Mov13]. We examine

the first three parts in more detail below.

The first part of the specification is titled “Systems” and discusses how MPEG-4

streams are organized into object descriptors and elementary streams (ES) [Int01]. An

MPEG-4 stream uses an initial object descriptor to gain access to an object descriptor

stream, which points to all the individual multimedia elementary streams in the

presentation, and a scene description stream, which contains commands to add, delete, or

modify multimedia objects in the current scene [Int01]. Each audio stream, video stream,

still image, or animation is contained in its own elementary stream which is added and

removed from the scene using commands in the scene description stream. Additional

25

elementary streams can be used for synchronization or content management [Int01]. This

part of the standard also specifies how all these elementary streams can be multiplexed

onto a single transport system.

For ease of discussion, we pass over the second part of the standard for the moment.

The third part of the standard is titled “Audio” and deals with the details of audio

compression in MPEG-4 [Mov13]. For general audio applications, MPEG-4 duplicates

MPEG-2’s AAC compression [Int02c]. In addition, MPEG-4 introduces two new

compression methods, HVXC and CLEP, for extremely low bitrate speech applications.

These new methods work effectively down to 2kbits/sec [Int02c]. MPEG-4 also utilizes

Reversible Variable Length Coding and Huffman Codeword Reordering to improve the

robustness of audio streams to loss [Int02c].

The second part of the MPEG-4 standard, which we skipped over previously, is titled

“Video” and deals with the details of video compression. Like its predecessors, MPEG-1

and MPEG-2, MPEG-4 video compression utilizes differential coding techniques for

effective compression [Int02a]. This takes the form of three different types of frames.

Intra-coded frames (I-frames) contain the full image texture content while

predictive-coded frames (P-frames) contain motion vectors that enable reconstruction of

the frame using the previous I or P frame. The third type of frame is a bidirectionally

predicted frame (B-frame). These B-frames are reconstructed similarly to P-frames using

motion vectors and both of the immediately adjacent I or P frames [Int02a].

The MPEG-4 standard refers to frames as VOPs (Video Object Planes) because they

are not constrained to be rectangular, unlike traditional video frames [Int02a]. Sequences

of frames, or VOPs, are divided into sets of dependent frames called GOVs (Group of

VOPs) [Int02a]. Each of these GOVs starts with an I-frame and encompasses all frames

dependent on this I-frame. One such sequence would be: IPBBPBBPBBPBBPBB.

26

Each VOP is divided into macroblocks, which contain the luminance and

chrominance data for a 16x16 section of the image [Int02a]. Each 8x8 section of either

luminance or chrominance is referred to as a block and processed separately. Since the

normal YUV4:2:0 format samples chrominance at half the resolution of luminance, this

results in 6 blocks in a macroblock, 4 luminance and 2 chrominance blocks [Int02a].

To encode an I-frame, or new texture data in P or B frames, each block is transformed

using the Discrete Cosine Transform (DCT) and then quantized. The remaining

coefficients are then encoded using a variable length code [Int02a]. In P and B frames, the

motion vectors for each block are simply encoded as variable length codes [Int02a].

Because MPEG-4 was designed to operate over lossy transport layers, several error

recovery and error concealment techniques were included in the standard. One of these is

the insertion of a resynchronization header at periodic intervals in the bitstream. This

header includes enough information to restart the block decoding process [Int02c].

Optionally, additional information can be included in these headers to recover even from a

corrupt VOP header. Another key error recovery feature included in MPEG-4 is reversible

variable length codes. All the variable length coded information in MPEG-4 can be

decoded in both the forward and reverse directions. This enables a decoder to work

backwards from a resynchronization header to recover as much of the bitstream as

possible [Int02c].

Because of the size and complexity of the MPEG-4 standard, a system of profiles and

levels was introduced in order to allow encoders and decoders to implement subsets of the

specification in a compatible manner [Goo05]. For example, the Simple Visual Profile

(SP) supports the coding of simple rectangular video in an error resilient manner and

disallows the use of B-frames [Int02a]. The Advanced Simple Profile (ASP) adds support

for B-frames and finer motion estimation [Int02c]. The Main Visual Profile supports

27

interlaced or arbitrarily shaped video along with the B-frames and fine motion estimation

from ASP [Int02a].

As a further complication, MPEG-4 part 10 introduces an improved video encoding

method called Advanced Video Coding (AVC). This encoding scheme is identical to

ITU-T Rec H.264 [Mov] but distinctly different from that in MPEG-4 part 2, which as

been the focus of this section. AVC allows the decision about whether to encode data in an

Intra or Predictive manner (I or P/B) to be made on a sub-frame level (the slice). In

addition, AVC offers significantly improved motion compensation and adds a de-blocking

filter to the decoding path [Mov].

Since Internet streaming was one of the planned uses of MPEG-4, part of the standard

discusses the transportation of MPEG-4 over IP networks. The Real-time Transport

Protocol (RTP) is the recommended solution, as discussed in MPEG-4 part 8 [Int02b].

2.1.2 The Real-Time Transport Protocol

The Real-time Transport Protocol (RTP) was developed by the IETF as a mechanism

for transporting multimedia conferences and other real-time data streams. It was originally

standardized in 1996 as RFC 1889 and later updated as RFC 3550 in 2003 [SFCJ03].

The RTP specification consists of two parts, the Real-time Transport Protocol (RTP)

to carry real-time data between application endpoints and the Real-time Transport Control

Protocol (RTCP) to provide participant information, session metadata, and

quality-of-service information to applications [SFCJ03]. Confusingly, the combination of

these protocols is commonly referred to simply as RTP.

RTP does not provide ports for multiplexing multiple sessions on a single address nor

checksums for data-integrity validation. For these reasons, it is typically run on top of

UDP or another transport layer protocol [SFCJ03]. Typically, the RTP data stream uses an

28

even numbered port of the transport layer protocol and the corresponding RTCP stream

uses the next higher (odd numbered) port [SFCJ03].

Each RTP packet consists of a 12 byte header followed by a media payload. The

header contains a payload type identifier specifying the particular type and encoding of

the transported media. Each of the payload type identifiers is defined in a separate RFC

along with details on exactly how the encoded data is encapsulated [SFCJ03]. This

standardization allows different applications to interoperate correctly and enables

applications to readily support multiple media types. The RTP header also provides a

packet sequence number, for loss and re-ordering detection, and a high-precision 32 bit

RTP timestamp indicating the sampling instant of the media payload [SFCJ03]. Finally,

RTP includes a source identifier (SSRC), identifying the source of this particular payload

in multi-party or multi-media presentations, and a marker bit to mark important locations

in the packet stream, typically the end of a frame or a new period of

speech [SFCJ03, KNF+00].

While RTP provides encapsulation of media data, RTCP provides control information

to the application to inform the sending and display of this media data. This control

information includes periodic reports from media senders and media receivers as well as

media metadata and application specific information [SFCJ03].

RTCP was designed for large, multi-party events, for example, multicasted IETF

working group meetings [SFCJ03]. For this reason, RTCP maintains a rough idea of the

number of senders and receivers in a session and adjusts its feedback rate to avoid

consuming an unreasonable amount of bandwidth with this feedback

information [SFCJ03]. An estimate of the number of senders and receivers is maintained

by adding the SSRC from any received RTP or RTCP packet to a table and then

periodically removing entries that haven’t been heard from in several RTCP report

intervals. Using this information, RTCP computes a report interval such that at most 5%

29

of the session bandwidth is consumed by feedback information [SFCJ03]. This bandwidth

is further divided so that senders get at least 25% of this feedback bandwidth. This

ensures that they can send metadata with reasonable frequency. In addition, RFC 3550

imposes a minimum interval of 5 seconds, or 2.5 seconds at the start of a session, between

RTCP packets sent by an individual host [SFCJ03].

An RTCP feedback packet contains a variety of information. The simplest case is a

feedback packet from a host that is only a receiver. In this case, the feedback packet

simply contains a Receiver Report (RR) [SFCJ03]. An RR contains the unique,

identifying SSRC value for this receiver and a set of statistics blocks about each of the

senders heard from since the previous RR. Each statistic block contains the SSRC of the

sender, the fraction of RTP packets lost since the last RR, the cumulative number of lost

packets, the highest RTP sequence number received, and an estimate of the jitter from that

source. In order to enable round trip time calculations, the NTP1 timestamp from the last

Sender Report (SR) and the delay between receiving that SR and sending this RR are also

included [SFCJ03]. These RRs provide senders with a variety of important information

about network conditions and received media quality.

Feedback packets from a sending host contain both a Sender Report (SR) and source

description items (SDES). An SR is very similar to an RR; it starts with the unique,

identifying SSRC for this sender and finishes with a set of statistics blocks about each of

the senders heard from since the last SR [SFCJ03]. However, it also includes some

information about the RTP stream being sent. In particular, an NTP timestamp and a

matching RTP timestamp are included so that the RTP timestamps in RTP packets can be

matched against wall clock time, enabling the synchronization of multiple streams with

different RTP timestamp increments. Each SR also includes the total number of packets

and octets of RTP data sent by this sender [SFCJ03].

1 Network Time Protocol, see [MMBK10].

30

The SDES items sent with each feedback packet from a sender contain metadata

about the RTP stream. The only required metadata is CNAME, a fixed identifier for all

streams originating from the same host. It is recommended that it takes the form

user@host [SFCJ03]. Other optional metadata tags include NAME, EMAIL, PHONE,

LOC (location), and NOTE.

RTCP enables a media sender to gather lots of information about network conditions

and the quality of media reception at the receivers. However, RTCP does not specify what

senders or receivers are supposed to do with this information [SFCJ03]. This is partly

because the reaction depends on the session infrastructure and environment. For example,

a single poor receiver in a large multicast session should join a lower quality multicast

group or drop the session while a sender in a one-to-one video conference should reduce

its sending rate in response to poor reception information from the receiver. However, this

leaves individual applications to develop their own algorithms for rate adjustment and

congestion control.

As mentioned above, RTP requires an additional RFC to standardize the transport of

a particular media type and assign a payload type identifier. For MPEG-4 audio and video,

this is RFC 3016 [KNF+00]. This standard does not make use of MPEG-4’s object

multiplexing or scene description information. A single audio or video elementary stream

is simply encapsulated in RTP packets. Multiple MPEG-4 elementary streams require

multiple RTP flows and scene composition information, if needed, must be supplied via

additional configuration [KNF+00].

An MPEG-4 video bitstream is mapped into an RTP payload without any

modifications. No additional headers are added nor is any data removed. However, there

are restrictions on where the bitstream is broken between packets. Specifically, MPEG-4

headers may only occur at the beginning of a packet and may not be broken between

packets [KNF+00]. It is recommended that only one VOP be contained in each packet.

31

These restrictions are designed to reduce the impact of lost packets on the decoding of

other, correctly received, packets. This standard also specifies that the RTP marker bit

must be set on the last packet of a VOP and that the RTP timestamp should increment at

90kHz [KNF+00].

MPEG-4 audio access units from an audio elementary stream are similarly mapped

into an RTP payload. No additional headers are added nor is any data removed. Each RTP

packet contains a complete access unit or a part of one [KNF+00]. As with the MPEG-4

video mapping, the RTP marker bit must be set on the last packet of an access unit and the

RTP timestamp increments at 90kHz [KNF+00].

2.2 Congestion Control

A great quantity of research has been poured into understanding network congestion

and developing effective congestion control algorithms to avoid congestion while

maximizing network utilization. This section examines several of these algorithms,

focusing on those used with RTP and DCCP. We start with possibly the most common and

best studied congestion control algorithm, TCP’s New Reno algorithm with SACK

support.

2.2.1 SACK TCP

The development of TCP’s congestion control began with Jacobson’s seminal 1988

paper [Jac88] in which he proposed five new algorithms designed to avoid congestion

collapses like those experienced on the Internet in 1986. These algorithms were based on

a principle that Jacobson called “conservation of packets” [Jac88]; that is, for a stable TCP

flow with plenty of data to transmit, a new packet is not put into the network until an old

packet has left the network.

Recall from section 1.3 that TCP offers reliable, in-order transmission of a

byte-stream between applications. To accomplish this, TCP forms bi-directional

32

connections between hosts and numbers each byte of application data. These sequence

numbers enable the detection of lost or re-ordered data. TCP maintains a sliding window

containing the data that it is allowed to send, and this window is moved forward by

acknowledgements from the receiver. TCP congestion control operates by adjusting the

size of this window, which corresponds to the amount of data maintained in the network

and hence the connection throughput [APB09].

Jacobson proposed a congestion control scheme controlled by two state variables.

The first, called cwnd, is the current congestion window, that is, the amount of data that

TCP’s congestion control will allow to be in the network at a given moment. The second

is ssthresh, the slow-start threshold. This variable determines what mode TCP congestion

control is currently in. If cwnd is below ssthresh, then TCP is in slow-start. Otherwise,

TCP is in congestion avoidance mode [Jac88, APB09].

TCP starts with cwnd equal to between 2 and 4 packets depending on the MTU2 of

the path3 and ssthresh initialized to infinity. This places TCP in slow-start mode. In

slow-start, TCP increases cwnd by one packet for each new acknowledgement received

from the receiver. Since the TCP receiver must acknowledge at least every other packet

received [Bra89], this results in exponential growth of cwnd. This mode is designed to

rapidly reach the equilibrium rate of a connection.

When a loss occurs, TCP halves cwnd, sets ssthresh to this new value of cwnd, and

enters congestion avoidance mode [APB09]. In this mode, TCP increases cwnd by one

packet per round trip (i.e. one packet every cwnd packets). This results in a gradual, linear

increase in cwnd [Jac88]. This mode is commonly described as additive increase,

multiplicitve decrease (AIMD).

TCP’s original method for detecting packet loss was the retransmission timeout

(RTO). An RTO occurs if TCP sends its whole window of data and a packet still has not
2 Maximum Transmission Unit, the size of the largest packet that could be sent on this network.
3 see RFC 5681 [APB09], section 3.1 for details.

33

been acknowledged after at least a round trip time plus four times the round trip time

variance, or a minimum of one second [PACS11]. TCP’s response is to assume that all

sent data has drained from the network and set cwnd to one packet [APB09]. Because an

RTO implies that a loss occurred, TCP also sets ssthresh to half of the old cwnd value.

TCP can then retransmit the lost packet, slow-start to half its speed prior to the RTO, and

enter congestion avoidance [APB09].

A later improvement to TCP was the addition of a second method for detecting

packet loss and a set of algorithms known as fast retransmit and fast recovery [Ste97].

This method relies on the fact that TCP’s acknowledgements are cumulative so the

acknowledgement number cannot advance beyond a missing packet. This results in

duplicate acknowledgements when later packets with higher sequence numbers arrive

following a loss. If TCP receives three duplicate acknowledgements in a row, it assumes

that the indicated packet has been lost and retransmits the missing packet [APB09]. This

is the fast retransmit algorithm.

Fast recovery now takes over and sets ssthresh to half of cwnd. Cwnd is set to half of

its previous value plus the size of the three packets that are known to have left the network,

as indicated by the three duplicate acknowledgements [APB09]. Each additional duplicate

acknowledgement increases cwnd by one packet because it indicates that another packet

has left the network. This continues until a cumulative acknowledgement is received

acknowledging new data. At this point cwnd is set back to ssthresh, undoing the increases

made for the duplicate acknowledgments. TCP then exits fast recovery [APB09].

A final optimization to TCP’s congestion control utilizes TCP’s Selective

ACKnowledgement (SACK) option. SACK, introduced in 1996 as RFC 2018 [MMFR96],

provides more information about what packets have actually been received. Basically,

SACK allows a receiver to signal up to four blocks of received packets above the

34

cumulative acknowledgement. A later RFC extended this concept to allow signaling

needlessly retransmitted blocks as well [FMMP00].

This additional information can be leveraged to further improve TCP’s congestion

control, particularly determining how much data is actually in the network and what

packet to send next. RFC 3517, standardized in 2003, provides the details [BAFW03]. A

structure called a “scoreboard” stores information about all packets currently in TCP’s

sliding window. This scoreboard is updated as packets are sent, cumulative

acknowledgements received, and SACKs processed.

The scoreboard is used to choose the optimal packet to send in fast retransmit/fast

recovery. In addition, a variable called pipe, representing the amount of data in the

network, can be computed from the scoreboard. In fast recovery, cwnd is no longer

inflated for each duplicate acknowledgement. Instead, data is transmitted when pipe is

less than cwnd [BAFW03]. Since pipe represents a more accurate understanding of the

data actually in the network, this enables TCP to utilize its now reduced window more

fully. For connections with high loss rates, this can result in significant improvements.

TCP congestion control has a long and complex history. Its basic principle is simple:

a multiplicative decrease on loss and additive increase otherwise. This is combined with

slow-start to rapidly increase speed on start up. However, a variety of algorithms have

been added over the years to more accurately follow this principle. As a result, we have a

highly-optimized mechanism that avoids congestion and competes fairly with other

network flows.

2.2.2 RTP-Based Congestion Control

For those real-time applications using RTP, where TCP is undesirable because of its

retransmissions and head of line blocking, a different set of congestion control algorithms

35

have evolved. These algorithms rely on the loss rate and round trip time information

supplied in RTCP feedback packets in order to detect and mitigate network congestion.

Interestingly, the Extended Profile for RTCP-based Feedback [OWS+06] explicitly

states that RTCP feedback should not be used for congestion control purposes. This

applies even to the extensions made by that document, which remove the five second

minimum report period. The reason given is that RTCP operates over a much longer

timescale than effective congestion control. Instead, that RFC recommends the use of

TCP-Friendly Rate Control (TFRC) [FHPW08]. Nevertheless, applications continue to

rely on RTCP feedback for congestion control [Lin13, BDS96, WHZ+00, FB02].

The scheme used by linphone, an open source SIP VoIP client [Lin13], appears to be

fairly representative. From examination of the source code,4 it appears that linphone uses

a very simple heuristic for congestion control. Linphone monitors the loss rate and round

trip time (RTT) indicated in each RTCP report. If the loss rate exceeds 10%, linphone asks

the media encoder to reduce its encoding rate by a percentage equal to the current loss

rate. If the RTT doubles between reports, linphone reduces its encoding rate, and hence its

sending rate, by 20%.

To take advantage of any additional bandwidth that might come available, linphone

enters an increasing mode after ten RTCP reports without high loss rates or sudden

increases in RTT. In this mode, linphone allows its media encoder to increase its rate by

20% over the next four RTCP report intervals.

Other congestion control schemes based on RTCP include [BDS96] and [WHZ+00].

The scheme presented in [BDS96] is designed for use in environments with multiple

receivers and uses two loss thresholds. The first threshold is 5% loss and indicates a

network in a loaded, but acceptable, state. The second threshold is 10% loss and indicates

a congested network. The algorithm presented in this paper decreases throughput when

4 Available from https://www.linphone.org/eng/download/git.html. Our version pulled on 12-27-2012.

36

10% of the receivers are congested and increases throughput when 80% of the receivers

are unloaded (i.e. below the first threshold).

By contrast, [WHZ+00] proposes an AIMD scheme. A multiplicitve decrease (5% in

their tests) in sending rate occurs when an RTCP report indicating a loss rate above 5% is

received. Otherwise, an additive increase in sending rate of 0.5Kbits/sec occurs. These

adjustments are bounded between minimum and maximum allowed sending rates.

All of these schemes suffer from the basic issue that RTCP feedback occurs only

once every five seconds. For real-time data flows, this represents tens to hundreds of round

trips; hardly an effective granularity for avoiding congestion, although it does work well

enough to detect significant, persistent congestion.

Because of the slower response time to changing network conditions, these

RTCP-based congestion control methods are likely to be unfair to TCP, which will

respond to congestion within a single round trip. In fact, it is possible that a TCP

connection will slow down multiple times before an RTCP regulated connection even

learns about the congestion.

Further, Mathis [MSMO97] showed that that sending rate achievable using TCP’s

congestion control algorithm is a function of the round trip time. This is in contrast to

these RTCP-based algorithms which have no round trip time dependence. As a result, the

competition and fairness between TCP and these RTCP-based algorithms will depend on

the connection’s round trip time.

It is also important to realize that these RTCP-based algorithms are application level.

That is, each application must implement its own congestion control. This is in marked

contrast to TCP where congestion control is built into the protocol itself and automatically

available without any extra work on the part of the application. Indeed, the desire to

eliminate the duplication of effort involved in application level congestion control was a

37

major motivator in the design of DCCP and its pluggable congestion control

modules [FHK06a, FHK06b].

2.2.3 DCCP Congestion Control

DCCP offers a selection of modular congestion control algorithms to applications,

enabling them to select that which is most appropriate [FHK06a]. Some applications, like

VoIP, may desire a smooth sending rate instead of the fastest rate possible while other

applications, like video games, may be able to tolerate sudden changes in rate and would

prefer to send as fast as possible.

To accommodate such diverse applications, two congestion control algorithms, or

CCIDs, are currently standardized, with two more experimental CCIDs in development.

We focus on the two standardized CCIDs in the discussion below.

2.2.3.1 CCID 2: TCP-Like Congestion Control

TCP-Like Congestion Control is one of the standardized DCCP CCIDs and is

numbered CCID 2 [FK06] (CCIDs 0 and 1 are reserved [FHK06a]). This CCID is

designed to closely replicate the behavior of SACK TCP.

Recall from section 1.5 that DCCP offers congestion controlled transmission of a

stream of datagrams between two hosts. Each datagram has a unique sequence number

and some datagrams contain an acknowledgement number indicating the highest sequence

number received by the sending host. Note that this acknowledgement number is not

cumulative like TCP. DCCP does not retransmit lost packets or ensure in-order delivery;

the acknowledgement information is utilized only for congestion control.

Because CCID 2 is designed to follow TCP’s congestion control, it utilizes similar

slow-start and congestion avoidance modes with, cwnd, ssthresh, and pipe variables. An

important difference is that CCID 2 measures these variables in packets while TCP

measures them in bytes. This is necessary because DCCP’s sequence numbers are also in

38

terms of packets and not bytes [FK06]. Just as in TCP, cwnd represents the current

congestion window, or the amount of data CCID 2 attempts to keep in the network, and

ssthresh represents the point of transition between the slow-start and congestion avoidance

modes. When cwnd is less than ssthresh, CCID 2 is in slow-start mode. Otherwise, it is in

congestion avoidance mode [FK06].

CCID 2 starts with cwnd equal to between 2 and 4 packets depending on the path

MTU. This places it in slow start mode. In this mode, CCID 2 increases cwnd by one

packet for every two newly acknowledged packets. This results in an exponential window

increase similar to TCP [FK06].

When a loss is detected, either by a Time Out (TO) or the observation of three

acknowledged packets above some unacknowledged packet, CCID 2 halves cwnd, sets

ssthresh to this new value of cwnd, and enters congestion avoidance mode [FK06]. In this

mode CCID 2 increases cwnd by one packet every cwnd packets (i.e. once a round trip

time). This results in AIMD behavior identical to TCP [FK06].

The Time Out (TO) timer mentioned above parallels TCP’s RTO timer and is used to

recover from an entire window of lost packets. TO is set to twice the round trip time.

Unlike TCP, there is no one second minimum [FK06]. If a TO occurs, CCID 2 assumes

that all data has left the network, sets pipe to zero, ssthresh to half of the old value of

cwnd, sets cwnd to one, and enters slow-start [FK06].

CCID 2 requires the use of the ack vector DCCP option on acknowledgement packets

from the receiver [FK06]. This option lists the state of all packets between the highest

sequence packet received and the last sender side acknowledgement and is conceptually

similar to a TCP SACK option. It allows the sender to know exactly what packets were

received, ECN-marked, or presumed lost [FHK06a]. This enables the computation of

pipe, the number of packets in the network, in a manner very similar to SACK TCP.

39

CCID 2 also utilizes DCCP’s ack ratio option to provide simple reverse path

congestion control [FK06]. DCCP’s ack ratio option allows the sender to control how

often a receiver sends acknowledgement packets. Specifically, a sender asks that every nth

packet be acknowledged [FHK06a] (CCID 2 starts with n = 2 by default). When

combined with sequence numbers that increment for every packet, which enable the

detection of lost acknowledgement packets, this allows DCCP to adjust the rate of

acknowledgement packets to avoid congestion on the reverse path [FK06]. While this is

usually not an issue, given the small size of most acknowledgements, it can become a

problem, particularly on links with asymmetric bandwidth. CCID 2 includes controls to

adjust the ack ratio so that the acknowledgement rate is roughly TCP friendly [FK06].

While CCID 2 is similar to SACK TCP in many respects, it does have some

important differences. One of these is that CCID 2 lacks Fast Recovery, the TCP

algorithm to artificially increase the window while retransmitting data following a triple

duplicate acknowledgement. The reason for omitting this algorithm is obvious: DCCP

doesn’t retransmit any data. However, this omission has the rather interesting side effect,

as pointed out in [TKI+05], of causing unfairness with TCP. In particular, CCID 2 can take

significantly more than its fair share of bandwidth when competing against TCP because

CCID 2 can grow its window in the round trip immediately following a loss while TCP

will reset its window on exiting Fast Recovery. The authors of [LL08] have proposed

introducing a virtual recovery period into DCCP in order to counteract this tendency, but

this has not yet been standardized.

One of the experimental CCIDs currently being developed is similar to CCID 2 but is

based on the CUBIC TCP algorithm instead of SACK TCP [Ren11]. This CCID has not

been standardized yet, but is being implemented in Linux. It is currently being referred to

as CCID 5.

40

2.2.3.2 CCID 3: TCP-Friendly Rate Control

CCID 3 is an implementation of TCP-Friendly Rate Control (TFRC) [FKP06].

TFRC is designed for applications that prefer smooth changes in sending rate over

maximum throughput [FHPW08]. In particular, it avoids the halving of the sending rate in

response to a single loss that TCP incurs. In theory, this should be beneficial for VoIP

traffic and most other media streaming applications.

To accomplish this goal, TFRC takes a distinctly different approach to congestion

control. The basic idea is to measure RTT and loss rate and then utilize an equation to

identify the sending rate that TCP would achieve in this environment [FHPW08]. Because

TCP is responsive to congestion, a sending rate calculated in this manner is reactive to

congestion. Further, TFRC should, at least in theory, share bandwidth fairly with TCP

since it achieves the same sending rate.

The throughput equation used by TFRC is based on the throughput achieved by Reno

TCP and is as follows [FHPW08]:

Xbps =
S

R ∗
√

2 ∗ b ∗ p/3 + (tRTO ∗ (3 ∗
√

3 ∗ b ∗ p/8 ∗ p ∗ (1 + 32 ∗ p2)))

Where Xbps is the allowed sending rate in bytes per second, S is the packet size in bytes, R

is the round trip time in seconds, b is the maximum number of packets acknowledged by a

single TCP acknowledgement, tRTO is the TCP RTO time in seconds, and p is the loss

event rate [FHPW08]. Note that p is the loss event rate, not the loss rate; the two are

similar but not identical. A loss event is an RTT’s worth of lost or ECN-marked

packets [FHPW08].

The TFRC specification recommends setting b = 1 and tRTO = 4 ∗ R which simplifies

the throughput equation to [FHPW08]:

Xbps =
S

R ∗
√

2 ∗ p/3 + 12 ∗
√

3 ∗ p/8 ∗ p ∗ (1 + 32 ∗ p2)

41

It is recommended that CCID 3 either use the path MTU as the packet size, S , or compute

an average over the last four loss intervals of packets [FKP06]. The round trip time, R, can

be measured using the feedback packets from the receiver while the loss event rate, p, can

be computed at the receiver, if it has some estimate of the round trip time, and returned on

the feedback packets.

A TFRC receiver sends feedback packets to the sender approximately once per round

trip time. In order for the receiver to have some idea of the round trip time, the DCCP

header includes a CCVAL field which CCID 3 uses to store a quarter RTT

counter [FKP06, FHPW08]. In this manner, the receiver can identify a round trip as the

length of time between packets whose CCVAL fields differ by four.

Each CCID 3 feedback packet contains an elapsed time option, indicating the amount

of time between the reception of the acknowledged packet and the sending of this

feedback packet, a receive rate option, specifying the rate at which data has been received

since the last feedback packet was sent, and a loss intervals option or loss event rate

option [FKP06]. The loss event rate option specifies the loss event rate, p, used in the

TFRC formula while the loss intervals option specifies the length of the last eight loss

intervals, enabling the sender to calculate p independently [FKP06].

Using the information from the feedback packets, and the TFRC equation above,

TFRC can calculate the equivalent sending rate of TCP under these conditions. TFRC

further restricts the allowed sending rate to be no more than twice the maximum of the

receiver’s receive rate in the last two RTTs [FHPW08]. This prevents sudden bursts in

throughput when an application attempts to send a large amount of data after having sent

very little for several round trips. In other words, when TFRC exits an application limited

period.

At this point TFRC has an allowed sending rate in bytes per second. This rate is then

divided by the packet size, S , to determine the sending rate in packets per second. TFRC

42

then uses a timer to clock out packets at this rate, provided it has packets to

send [FHPW08].

TFRC employs a No Feedback timer to reduce throughput if no feedback packets

have been received from the receiver in the last four round trips. If this timer expires, the

current sending rate is cut in half and the No Feedback timer reset [FHPW08].

Using the TFRC throughput equation to compute an initial sending rate would be

problematic because both the loss event rate and the round trip time are initially unknown.

For that reason, CCID 3 initializes the sending rate to between 2 and 4 packets per second,

depending on the path MTU, and doubles the allowed sending rate every round trip until

the first loss [FKP06]. The result is a controlled, but rapid, increase in throughput at the

beginning of the connection.

This rounds out the TFRC congestion control algorithm. The goal of this algorithm is

to offer smoother changes in sending rate while being reasonably fair to TCP for those

applications that would prefer to avoid TCP’s sudden changes in rate, particularly its

halving the sending rate in response to a single packet loss.

A slightly modified version of TFRC, optimized for the small packet sizes often seen

in VoIP systems, has been proposed. It is still very much experimental but has been

numbered CCID 4 [FK09].

2.3 Literature Review

This section examines the literature on MPEG-4/RTP streaming and DCCP

performance.

2.3.1 Performance of MPEG-4/RTP Streaming

MPEG-4 and RTP are both well established standards with a significant body of

research examining their performance. This body of work includes application case

43

studies as well as studies on the effects of packet loss in MPEG-4 streams and

examinations of the fairness of MPEG-4/RTP flows to other traffic.

Unlike other applications of MPEG-4 and video compression technologies, data loss,

in the form of dropped packets, is an expected part of video streaming. As a result, much

research has gone into examining the quality of streamed video and its relationship to the

loss rate. [PUN12] analyzes the quality of MPEG-4/AVC and MPEG-2 video using the

PEVQ method while [LAG03] examines how quality degrades as loss run length changes.

The authors of [JLddM10] examined the bursty nature of video frames in wireless

networks and how that relates to loss rate and video quality. They found that evenly

spacing the packets making up a frame reduced loss rate and noticeably improved quality.

A significant amount of work has also gone into mitigating the effects of packet loss.

Research efforts include modifying MPEG-4 to use conditional replenishment instead of

motion vectors in P-frames as done in [LTG99] and using different RTP encapsulation

mechanisms as suggested by [GMM04]. Some form of retransmission is a common

suggestion [FB02, WSL00, RCPC99]; however, all successful tests of such systems utilize

latencies far too high for real-time, interactive video. Given typical round trip times on the

Internet, it seems unlikely that this would ever be practical for real-time, interactive

applications.

Forward Error Correction (FEC) is another common proposal for mitigating the

effects of packet loss and is being used by several commercial videoconferencing

products [WSL00, AML03, Wai08, ZXH+12]. An interesting hybrid approach is to

combine FEC or retransmission with MPEG-4 scalable video, where additional video

streams can enhance the quality of a so-called base stream. The error correction via

retransmission or FEC is only done on the base layer. This approach is utilized in

both [RCPC99] and [AML03].

44

There has also been active research into rate control methods for video streams. The

authors of [WHZ+00] suggest an Additive Increase, Multiplicative Decrease scheme

similar to TCP while [LM03] proposes a binomial scheme where increase is inversely

proportional, and decrease directly proportional, to the current window. The authors argue

that this binomial scheme shows reduced window variation relative to AIMD. Yet another

proposal is [LTG99], which recommends computing a TCP-friendly sending rate based on

network loss rate and round trip time. This approach is very similar to TFRC, used by

DCCP CCID 3.

The rate control algorithm presented in [BDS96] determines its sending rate by

attempting to keep the network loss rate within a certain range and increasing or

decreasing its bitrate as needed to do so. What all of these studies have in common is the

usage of RTCP reports to provide information for the congestion control algorithms. As

we have already discussed in section 2.2.2, this introduces significant granularity into the

measurements, making effective congestion control difficult.

Another complexity of video traffic is its general burstiness. The authors of [KT97]

propose a model of video bitrate variation that develops models for the sizes of I,P, and

B-frames separately and then mixes those models together according to the GOV pattern,

which is assumed to be fixed. Realizing that burstiness complicates round trip and

retransmission timeout calculations, the authors of [BA05] develop a retransmission

timeout algorithm that outperforms TCP’s RTO timer algorithm for video data. They also

assume a fixed, relatively small, GOV pattern and make assumptions about packet timing

from this pattern. General models of network traffic burstiness include [DR06]

and [LV91]. These works are mostly concerned with the burstiness of aggregate network

traffic, but offer insights into, and metrics for, burstiness in general.

Several researchers have examined the TCP-friendliness of video streams from a few

different applications and found mixed results. In 2001, [HAOS01] examined a variety of

45

common streaming media applications, including RealPlayer and Windows Media Player,

and found them all to be responsive to congestion but not fair to TCP. However, by 2003,

when [CCZ03] examined the TCP-friendliness of RealPlayer, its congestion control had

been improved to be TCP-friendly, in that it achieved similar rates given equivalent

network conditions. However, the authors still observed noticeable unfairness in UDP’s

favor when in competition with TCP, particularly at low throughput. This confirms our

assertion that congestion control is notoriously hard to design and implement properly.

That said, it is not impossible. Two separate studies have examined Skype’s congestion

control and found it to be reasonably fair to TCP [ZXH+12, CMP08].

A final work that holds particular interest for us is [LKP08]. This work develops a

model for MPEG-4 videoconference type streams and points out that videoconference

material is distinctly different from other common video sources, particularly because of

its lack of scene changes. We are particularly interested in videoconference material

because that is exactly the purpose for which linphone [Lin13], our test application, was

designed.

2.3.2 DCCP Performance

Since its inception, a few researchers have examined DCCP with the intent of

understanding its performance. Most of these studies have been content to simulate the

performance of DCCP in general or have focused on using CCID 3 in challenging

environments like wireless or satellite links.

One aspect of DCCP that has been well studied is the fairness of its CCIDs with TCP.

The authors of [GDW06] examined DCCP CCID 3’s fairness with TCP using the OPNET

Modeler and found that CCID 3 is reasonably fair with TCP in low to medium loss

environments. In high loss environments CCID 3 gains more bandwidth than TCP, likely

because of RTOs. Note that reasonably fair competition is generally accepted in the

46

Internet community to mean that the throughput of the competing protocols are within a

factor of two of each other [WH06, FHPW08]. CCID 2’s fairness with TCP was

investigated experimentally in [BBM08]. The authors found that CCID 2 is reasonably

fair to TCP for round trip times between 20 and 200ms. Beyond that point there is

significant unfairness. [TKI+05] elaborates on this by suggesting that DCCP’s lack of Fast

Recovery is at least part of the reason for this unfairness.

DCCP’s fairness with TCP has also been examined in [NHG10]. This paper used

simulations between TCP, CCID 2, CCID 3, and UDP to examine fairness in long delay

environments. The authors show that both DCCP CCIDs behave nicely with TCP in

congested environments, unlike UDP. The strength of their results is significantly reduced

because they kept TCP window limited during the course of their simulations, not

allowing it to compete for its full share of link bandwidth.

CCID 3 has been a particularly hot topic for researchers, especially its behavior in

challenging environments. The authors of [FdFPM10] examined CCID 3 at Gigabit

speeds and identified issues with the scalability of single CCID 3 connections at that

speed. However, CCID 3 was able to scale with respect to number of connections in this

environment.

The authors of [WKD11] also investigated CCID 3, but their focus was on the

relationship between round trip time, queue size, and loss rate. Using OPNET Modeler,

they found an inverse relationship between queue size and loss rate and a direct

relationship between queue size and round trip time. They also observe that a large

portion of packet drops occur at the very end of slow start.

CCID 3 has also been investigated in wireless networks by [LLA+04], [NAT06], and

[dSOPdM08]. [LLA+04] and [NAT06] utilize the NS-2 simulator and the DCCP module

designed by Mattsson in [Mat04]. Both studies focus on ad-hoc mesh networks. The

authors of [LLA+04] show that CCID 3 has a difficult time detecting wireless link

47

saturation while [NAT06] examined the competition between CCID 3 and TCP in this

environment and found it to be reasonably fair.

Researchers out of the University of New South Wales have produced a large

quantity of research on the performance of DCCP CCID 3 in satellite networks. In

[SLB07], they found that CCID 3 performs much worse than it theoretically should and

that its performance could be improved by sending feedback more than once a round trip.

Then in [SBJL08] they offer a formula for computing a better feedback rate based on

round trip time and receive rate. Finally, in [SBL09] they extend this analysis to CCID 4

and offer similar improvements. The authors of [SF07] also investigated the performance

of CCID 4 in satellite networks and found problems with VoIP silence suppression

triggering repeated slow start.

A few researchers have examined DCCP for the purposes of video streaming, like we

do in this work. However, all of these authors utilized simulations instead of actual

network experiments as we do. The authors of [AMM09] examine CCID 2, CCID 3, UDP,

and TCP for the transport of MPEG-4 video using the NS-2 simulator. They observe that

TCP obtains the best performance but at the cost of jitter and delay. CCID 2 provides a

reasonable second best, beating CCID 3 because it can react faster to changing application

data rates. No consideration is given to the timeliness factor of video.

[CMY09] utilizes NS-2 simulations to examine MPEG-4 video streaming in wireless

networks over DCCP CCID 2 and SCTP. The authors examine network throughput, delay,

and jitter for MPEG-4 video streaming over CCID 2, SCTP, and UDP in the absence of

other traffic. They found that SCTP and CCID 2 both perform better than UDP.

Importantly, this paper made no consideration of received video quality, focusing on

network conditions instead.

The authors of [VSB06] take a larger view of video streaming and consider video

quality in addition to network conditions. They focus on how DCCP CCID 3 shares

48

bandwidth with other CCID 3 flows and the corresponding results on video quality, again

using NS-2 simulations. They observe that equal bitrate does not necessarily correspond

to equal quality and suggest that CCID 3 be modified to allow unused bandwidth from low

complexity points to be used later for sending more complex scenes. The focus of this

work is on competition between video streams so competition with other traffic types was

not examined.

Our work builds on this literature by considering video quality and network

conditions in real testbed and Internet networks. We compare DCCP with a modern

UDP/RTP-congestion control algorithm and are forced to deal with the complexities of an

actual MPEG-4 bitstream. The full details of our experiments are presented in the

following chapter.

49

3 Experimental Setup

This chapter discusses the real-time, streaming media application used in this work

and our experience in modifying it to use DCCP instead of UDP. We also discuss the

Linux DCCP implementation, video quality metrics, and our various experimental setups.

3.1 Linphone

This work utilizes linphone, an open source SIP VoIP client capable of video calls, as

a representative real-time, streaming media application. Linphone is sponsored by

Belledonne Communications and is extremely cross platform, operating under Linux,

Windows, Mac OS X, iOS, Android, Blackberry, and WebOS [Lin13].

Linphone claims to be one of the very first open source SIP VoIP clients, with

development beginning in 2001 [Bel13]. It features the ability to utilize multiple SIP

accounts, SIP proxy support, and call management features like hold, resume, and

transfer [Lin13]. Acoustic echo cancellation is included along with the option for RTP

encryption. Video calls can be made at resolutions up to 800x600 and frame rates of up to

25 frames per second. Full HD support (up to 1920x1080 at 25 frames per second) is

essentially complete, but has yet to be enabled by default.5 Finally, linphone has support

for a wide variety of media encoding formats and a modular framework making it easy to

add new encoders and decoders, or codecs.

Notice that linphone uses a frame rate of 25 frames per second for high quality video.

This frame rate is used with the PAL analog television system used in much of Europe,

Asia, and Australia [Ado13]. As linphone is sponsored by Belledonne Communications,

which is based out of France [Bel13], this is not particularly surprising. In the United

States, a frame rate of 29.97 (color) or 30 (black & white) frames per second is much

more common because of the NTSC analog television standard used by the US, Japan,

5 We enabled full HD resolution, 1920x1080, in the build of linphone used in our experiments.

50

and South America [Ado13]. We elected not to modify linphone’s frame rate. This was

partly because the situation with digital television is even more confusing with several of

the competing formats supporting a variety of frame rates [Adv07, Adv95, Dig12]. In

addition, we found it challenging enough to get linphone to encode each frame in the

40ms between frames at 25 frames per second. Increasing the frame rate did not seem to

be a wise idea.

It is worth noting that linphone already has a reputation in the research community,

having been used in a variety of projects examining VoIP software, NAT traversal, and

VoIP codecs [JSB+09, KC11, LTHW10, WW07, WW08].

3.1.1 Architecture

Linphone is composed of several libraries that sub-divide the application into several

subsystems. Liblinphone is the main library against which all the graphical front ends

link. Liblinphone is written in C and links together several other libraries and protocols to

provide a simple API for audio and video calls. The lower level libraries, also written in

C, include oRTP, which handles RTP and RTCP, and mediastreamer2, which provides an

API and framework for capturing, playing, and streaming audio or video. A set of two

external libraries, libosip2 and libeXosip2, handle the SIP protocol.

The oRTP library takes media data and encapsulates it into RTP packets which are

further encapsulated by UDP. It also handles all of the RTCP computations and

automatically sends sender and receiver reports as needed. This library also offers NAT

detection and traversal technology.

Mediastreamer2 is a comprehensive library for media streaming. It can be used to

create pipelines of filters to capture, manipulate, send, receive, and display audio or video.

Each input, output, and supported codec is its own filter and the library provides an API to

chain these filters together and then control these chains. Mediastreamer2 also has an

51

event queue that oRTP can use to report network conditions. This information is then used

by mediastreamer2’s bitrate control to adjust the codec’s target bitrate.

Mediastreamer2’s bitrate control algorithm operates by examining the network’s loss

rate and round trip time (RTT), as mentioned in section 2.2.2. If the network loss rate

exceeds 10% or the RTT doubles between two RTCP reports, then the bitrate is reduced.

The bitrate is slowly increased after ten RTCP reports indicating neither of these

conditions. It is important to note that mediastreamer2 will only attempt to adjust the

target bitrate of the video stream. Neither the frame rate nor the resolution will be adjusted

as a result of network conditions.

Mediastreamer2 supports a wide range of audio formats including speex, PCMU,

PCMA, GSM, G722, and L16. On the video side, H.263, theora, motion jpeg, and

MPEG-4 are supported. Examination of the source code shows that the MPEG-4 encoder

is using the Simple Visual Profile. This implies that no B-frames are being used. Since

B-frames depend on both the preceding and following frames, they would have twice the

probability of being distorted by packet losses, making their exclusion an understandable

choice. Internally, encoding and decoding for H.263, motion jpeg, and MPEG-4 is done

using the libav6 library [Lib13].

3.1.2 Modifications

Standard linphone does not support DCCP, so our first task was to add DCCP

support. It was also necessary to make a few other modifications in order to complete

support for full 1920x1080 HD video and allow video input/output from files.

Adding DCCP support was complicated by the fact that DCCP is a

connection-oriented protocol while UDP is inherently connectionless. This means that a

6 Formerly ffmpeg.

52

DCCP socket has to be connected to a specific host before data can be sent while a UDP

socket can send each packet to a different host.

In linphone’s oRTP library, each RTP “connection” utilizes one UDP socket for RTP

data and another UDP socket for RTCP data. We added DCCP support for the RTP stream

while continuing to utilize UDP for the RTCP stream, because of the small amounts of

RTCP data sent and the long intervals between bursts. To accomplish this task, we

modified oRTP to use three sockets for RTP data in place of the one UDP socket used

originally. One of these sockets is used for sending, one for receiving, and one to listen for

new connections. When using DCCP, these are actually three separate sockets while with

UDP they become references to the same single socket.

The first step in adding DCCP support was adding the ability to choose UDP or

DCCP for data transport at RTP “connection” creation time. This was a crucial design

decision in our work: we wanted to add DCCP support in such a way that one could

choose between UDP and DCCP transport on the fly.

With that in place, we added a new set of functions to create the needed DCCP

sockets and set CCIDs and other socket options as needed. We then added code to the

RTP send function to attempt to connect the DCCP socket if it was not already connected.

Similarly, we modified the RTP receive function to check if a connection is using DCCP

and has a valid receive socket; if that is the case, then it tries to receive data on the socket.

Otherwise, the function checks to see if any connections are pending and accepts one. In

the case of socket errors, the relevant socket is simply closed. The next time a send or

receive is attempted, a new connection will be started. None of this new behavior effects

the old UDP processing path.

When an application sends a packet, DCCP adds this packet to the connection’s send

queue, from which it sends as its congestion control allows. When this send queue fills up,

DCCP rejects further packets with an EAGAIN error [The09]. Provided the queue is

53

properly sized, this rejection provides a signal to the application that it needs to slow

down. If DCCP is using CCID 3, the computed allowed sending rate can also be retrieved

using a socket option [Ren07]. To convey this feedback to the media encoder, we added

code to check for EAGAIN errors and report those as events to mediastreamer2,

linphone’s media streaming library. If CCID 3 is in use, we also occasionally report the

current computed sending rate to mediastreamer2. We discuss these modifications in

detail in section 3.2.3 below.

In addition to adding DCCP support, we also made a few other modifications to

linphone in order to carry out our experiments. This mainly consisted of adding a video

file input filter to be able to play a video file into linphone and a video file output filter to

be able to record the video displayed by linphone. Adding these two filters allowed us to

ensure identical inputs for all of our experiments and enabled us to capture linphone’s

video output in a manner that allowed easy offline video quality analysis.

To successfully stream HD video, we found it necessary to multi-thread the video

encoding filter. Enabling HD video simply requires setting a #define in the source code;

however, we found that attempting to stream HD video after setting the #define resulted in

an extremely low frame rate and recurring warning messages from mediastreamer2.

Mediastreamer2 utilizes a single thread for all media pipelines and iterates over all the

filters; hence, each filter only has a small fraction of the time between frames to process

each frame. Adding a second thread to the video encoding filter allowed it to spend the

full amount of time encoding each frame, thereby enabling a full 25 frames per second.

3.2 Application Considerations for DCCP

In the course of adding DCCP support to linphone and our initial testing, we

discovered a few unexpected issues as a result of the differences between UDP and DCCP.

54

Those considering migration to DCCP or designing a new application using DCCP should

think about these issues.

3.2.1 Socket Queues

When using DCCP, the size of the socket queue turns out to be very important.

Unlike UDP, where packets are send immediately, DCCP queues application packets and

sends them as its congestion control allows. When this queue fills up, DCCP rejects new

packets with an EAGAIN error [The09].

Media streaming applications typically deal with chunks of data (video frames or

short chunks of audio data) that are sent at regular intervals, typically 10-40ms [WW08].

For video data in particular, these chunks can be tens or hundreds of packets in size. UDP

will happily take all of these packets and blast them out onto the network in a short,

high-rate burst, causing all sorts of problems for other network traffic and dramatically

increasing the risk for queue overflow at nearby routers. DCCP however, will only queue

as many packets as allowed by its queue size and then send them as allowed by its

congestion control.

If the DCCP socket queue is smaller than a chunk of data, DCCP will reject packets

that it may actually be able to send before the next chunk is ready. However, if the socket

queue is too large, several chunks of data can be queued before DCCP rejects data and

alerts the application to slow down. This dramatically increases the apparent delay

between endpoints as well as reducing the promptness of application reactions to

changing network conditions.

The ideal queue would accept exactly one chunk of data and discard any remaining

packets when the next chunk is ready. Unfortunately, Linux only offers FIFO and priority

queues at this time [Ren07]. Given those options, it seems best to select a FIFO queue

whose size equals one chunk of data.

55

Compressed video, however, tends to exhibit dramatic variations in frame sizes.

I-frames are much larger than P-frames which are larger than B-frames; a factor of four

difference between I-frames and P-frames is not uncommon. In addition, image

complexity and the amount of motion between frames create large differences even within

these groups. This complicates determining the appropriate DCCP queue size

significantly.

The algorithm we settled on for adjusting DCCP’s send queue size was to double the

queue size each time we encountered a video frame that was larger than the current queue

size. Every thousand frames we determined the largest frame seen in that time and

reduced the queue to that size if needed. This seems to maintain a reasonable balance

between ensuring that we don’t reject data unnecessarily and minimizing the amount of

time frames spend in this queue.

3.2.2 Feedback to Application

DCCP provides feedback to the application about its sending rate by refusing to

queue packets or, for some CCIDs, a socket option that returns the current allowed

sending rate. These methods of feedback can be rather awkward for media streaming

applications to utilize.

Using a getsockopt() call to get the current allowed sending rate and then adjusting

the media sending rate based on that information is fairly simple. However, only CCID 3

currently offers such an option. CCID 2 has no such socket option.7 In addition, the

relevant socket option actually returns a structure containing information about a variety

of important CCID 3 parameters. It is highly unlikely that another implementation of

DCCP would include an identical socket option.

7 Although such an option could be implemented rather easily. The allowed sending rate is simply
window size∗avg pkt size

RTT .

56

Further, experience has shown that CCID 3’s computed sending rate varies wildly

from one moment to the next. We only attempt to adjust the bandwidth on a 10% decrease

or 20% increase and even then found it necessary to further limit the number of rate

changes by enforcing a four sampling period wait time between adjustments.

While CCID 3 offers a relatively convenient socket option to get the allowed sending

rate, CCID 2 has no such feature. The only feedback given by CCID 2 is its refusal to

queue a new packet when the send queue is full. This has the major downside that an

application has no idea when it could send faster than it is currently sending. Applications

must, therefore, periodically probe DCCP for additional bandwidth. Hence, application

authors need to implement a scheme where bandwidth is slowly increased as long as

CCID 2 has not recently rejected packets.

Since linphone already has bitrate management built in for use with RTCP, we reused

that mechanism to probe for additional bandwidth if ten RTCP report intervals pass

without CCID 2 rejecting any packets. On a packet reject, we reduce the requested bitrate

by 10%. We also combine packet rejects that occur within a single frame into one

reduction event and implement a minimum time between bandwidth adjustments.

Reusing linphone’s existing bandwidth management with CCID 2 has a significant

complication. Linphone’s bandwidth management uses an exponential, percentage-based

increase to probe for available bandwidth. CCID 2, by contrast, increases its bandwidth in

a linear manner. This mismatch can cause linphone to quickly overshoot CCID 2’s

available bandwidth. A linear bandwidth probe increase would avoid this tendency to

overshoot, but would take longer to find CCID 2’s sending rate.

We justify our decision by pointing out that an application converting to DCCP is

very likely to reuse its existing code just like we did. Further, percentage-based increases

and decreases, which are inherently exponential, are rampant in real-time, streaming

media applications and their RTP congestion control schemes [Lin13, BDS96, LM03].

57

Altering that tendency will take time and effort and requires these programmers to have at

least a basic idea of CCID 2’s congestion control algorithm.

Using DCCP’s refusal to queue packets as application feedback also complicates

queue length management as mentioned above. Make the queue too large, and the

application will not get its feedback until significantly after network conditions have

changed. Make the queue too small, and the application will artificially limit its

bandwidth.

3.2.3 Codec Rate Adjustment

Once an application receives feedback from DCCP about its allowed sending rate, the

application needs to pass this information on to the media encoder. This can have

unexpected side-effects if there are limitations on when an encoder can adjust its bitrate.

When mediastreamer2 decides to adjust the bitrate of an encoded media stream, it

sets the new bitrate and then re-initializes the encoder, essentially creating a new MPEG-4

stream. Examination of the libav source code8 shows that this is a libav limitation; libav

was simply not designed with the ability for the user to adjust the target bitrate on the fly.

Re-initializing the decoder results in the next frame, the first frame in the new stream,

being a new I-frame. This has to be the case because there is no previous frame in this

new stream to base a P-frame off of. As mentioned before, I-frames are usually

significantly larger than P-frames, often by a factor of four or more. This causes an

interesting phenomenon where reducing the bitrate of the decoder actually results in

sending an I-frame which is much larger than a P-frame at the previous bitrate would have

been. While the average bitrate will be lower (the large I-frame is balanced by a very large

number of small P-frames), the short-term bitrate actually increases.

8 Available from git://git.libav.org/libav.git. Our copy pulled April 22, 2013.

58

This interacts badly with DCCP’s rejection-based feedback mechanism. A reject

results in a bitrate reduction which results in a new I-frame. This new I-frame is

significantly larger than the P-frame that just caused a DCCP reject so it also triggers a

reject which results in another bitrate reduction. This cycle will converge toward the

minimum bitrate, and quality, for the video stream and may never stabilize if that

minimum bitrate is close to DCCP’s allowed sending rate.

In order to alleviate this problem, we were forced to limit the frequency with which

bitrate updates were made. In this way, the video bitrate could properly average out before

another change was made. We ran a variety of experiments to examine how this update

interval related to video quality and present our results in section 4.3.

3.3 The Linux Kernel DCCP Implementation

The Linux kernel contains the only maintained implementation of DCCP that we are

aware of. There have been several attempts to implement DCCP under BSD or in user

space [Hag03, Phe08, Zol02]. All are now, unfortunately, unmaintained and abandoned.

DCCP support was added to the Linux kernel in version 2.6.14 in 2005 [Ker07].

However, at that time, the implementation was far from complete, as only CCID 3 was

supported. A small team of developers continued to improve the implementation over

time. CCID 3 continued to be the primary focus, but CCID 2 was added around 2008.

We began working with DCCP on Linux in the summer of 2010 and quickly noticed

severe performance issues, particularly with CCID 2. By examining DCCP traces using

tcptrace [Ost03] and a conversion utility we developed,9 we were able to identify eight

separate bugs in the Linux DCCP implementation. About half of these bugs resulted from

the interactions between the DCCP protocol itself and the pluggable congestion control

modules. Most of the other bugs were problems with the CCID 2 implementation. We

9 dccp2tcp. Available from https://github.com/samueljero/dccp2tcp.

https://github.com/samueljero/dccp2tcp

59

submitted these bug fixes back to the Linux development team, and they were included in

Linux 3.2.10

For this work, we started with the default Ubuntu 12.04 LTS 3.2.0-39 kernel because

we wanted our results to be representative of the DCCP implementation in most modern

Linux kernels, not some customized, experimental DCCP kernel that no one other than

Linux DCCP developers use. However, in the process of running experiments for this

work, we discovered a bug in CCID 3’s loss interval handling.

This bug is that CCID 3 does not update the length of the second loss interval until

the loss starting the third interval. It should be updating the length throughout the entire

loss interval and recomputing the loss event rate. Instead, the loss event rate stays constant

throughout the second loss interval. We have observed this bug causing connections to

maintain a very low sending rate for several minutes because the computed loss event rate

is around one packet in every thirty. When the second loss finally occurs, starting the third

loss interval, the computed loss event rate suddenly jumps to one packet in several

thousand and the allowed sending rate increases dramatically.

We submitted a patch for this bug and had it accepted into the Linux DCCP testing

tree [Jer13]. We expect this patch to make it into the mainline kernel eventually but do not

have a definite timeline as of this writing. We also backported this patch to the DCCP

module in our 3.2.0-39 kernel11 and utilized this 3.2.0-39+CCID3 fix kernel for our

experiments.

The Linux DCCP developers do maintain a DCCP testing tree where experimental

DCCP features and new patches can be tested.12 A variety of new features are included in

this tree that are not yet considered stable enough for the mainline kernel. These include

the two experimental CCIDs mentioned previously (numbers 4 and 5) and Explicit

10 Released January 4, 2012 [Ker12].
11 See Appendix B for this patch.
12 This tree is located at http://eden-feed.erg.abdn.ac.uk/cgi-bin/gitweb.cgi?p=dccp exp.git.

http://eden-feed.erg.abdn.ac.uk/cgi-bin/gitweb.cgi?p=dccp_exp.git

60

Congestion Notification (ECN) [RFB01] support. ECN support, in particular, should

further improve overall DCCP performance once it is stable enough for inclusion in the

mainline kernel.

3.4 Video Quality Analysis

In our experiments we are particularly interested in examining the quality of the

video transmitted over DCCP versus UDP. While loss rate and throughput data are

important, what really matters for an interactive streaming application, like linphone, is

media quality.

Measuring media quality turns out to be rather complicated because what we really

want to measure is the media quality as perceived by the human visual or auditory system,

both of which exhibit a variety of nonlinearities and masking effects

[WBSS04, CZM+10, WM08]. One could argue that the only truly “correct” manner to

evaluate media quality is through subjective human evaluation. However, as such

evaluation is expensive, time-consuming, and difficult, much work has gone into

developing objective models that offer some approximation of media quality.

In the video space, no metric seems to have emerged as the clear standard. Most

studies use the Peak Signal to Noise Ratio (PSNR) while admitting that it has only

approximate correlation to human perception [CZM+10, WM08, GDK+05, VN04]. The

International Telecommunication Union (ITU) has proposed a set of metrics for video

quality measurement as ITU-T J.247 [Int08]; however, these metrics have not caught on in

the research community, possibly because they are encumbered by patents.

In this work, we utilize PSNR and SSIM, two common quality metrics in the research

literature. We discuss these metrics in detail below.

61

3.4.1 Peak Signal to Noise Ratio

Peak Signal to Noise Ratio (PSNR) is one of the most popular metrics for video or

image quality analysis [WM08]. This is due in a large part to its simplicity. PSNR simply

measures the degree of distortion between a reference image and a test image in a pixel by

pixel manner. Higher values indicate less distortion and, presumably, better quality. Note

that PSNR is what is known as a full-reference metric; the video under consideration is

compared against the original source video to determine its quality.

PSNR is simply a logarithmic representation of the mean squared error between

corresponding pixels in corresponding frames. This makes it incredibly easy to compute.

Mathematically [VN04]:

PS NR = 20 ∗ log10

(
max pixel value

√
MS E

)
Where MS E is the mean squared error:

MS E =

∑i=n−1
i=0

∑ j=m−1
j=0 [f (i, j) − F(i, j)]2

m ∗ n

Where f is the n x m source image and F is the n x m test image.

PSNR has a theoretically unlimited range. However, typical PSNR values range

between 20dB and 40dB. 20dB is typically considered unwatchably poor quality while the

differences between two images at 40dB are typically considered imperceptible to the

human visual system [Goo05, GMM04, Sea04].

Note that PSNR is a frame-by-frame comparison between the reference video and the

test clip. If these videos are not synchronized to have exactly corresponding frames, then

the PSNR measurements will suffer significantly; one missing frame results in all later

comparisons being off by one. Since lost or undecodable frames are occasionally expected

in streaming video, this has to be compensated for in order to meaningfully utilize PSNR

to measure video quality.

62

We compensated for this issue by having the video receiver compute a frame number

from the RTP timestamp associated with each frame. Our video output filter then utilized

this frame number to identify missing or duplicated frames and produce a frame

synchronized output file. In place of a missing frame, we duplicated the previous frame.

This approach emulates the common practice of continuing to display the prior frame

when a loss occurs and has precedence in the literature [GMM04]. We utilized

qpsnr [Ori10], an open source video quality analyzer, to do the actual frame-by-frame

PSNR computation.

Unfortunately, while PSNR is a simple and easy to compute video quality metric, it is

not a particularly good one. A variety of studies have shown that PSNR only loosely

corresponds to quality as perceived by the human visual system

[WBSS04, WM08, CZM+10]. This is because PSNR weights all distortions equally

without taking into account how noticeable they are to the human visual system. To

illustrate this, we have reproduced [WBSS04]’s figure 2 as our figure 3.1. This figure

shows a variety of distorted images of various perceived quality levels, all with the same

PSNR value.

3.4.2 Structural Similarity

Another common image or video quality metric is Structural Similarity (SSIM). This

metric was proposed in [WBSS04] in part to compensate for some of the shortcomings of

PSNR. SSIM works on the assumption that the human visual system is primarily

interested in the structural information, like objects and their shapes, in an image. With

that as a foundation, SSIM attempts to quantify distortions in this structural

information [WBSS04].

Like PSNR, SSIM is a full-reference metric, requiring the original source video from

which the test clip was produced. In addition, it performs a similar frame by frame

63

(a) Original (b) Contrast-stretched (c) Mean-shifted

(d) JPEG-compressed (e) Blurred (f) Salt-pepper contaminated

Figure 3.1: Comparison of images with different types of distortion and identical PSNR

values. Figure from [WBSS04].

comparison between the reference and test videos, requiring frame synchronized video.

SSIM values range between 0 and 1 with higher values indicating less distortion of

structural information.

SSIM is computed mathematically as follows [WBSS04]:

S S IM =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)

Where µx and µy are the average luminance values in the reference and test images

respectively, and σx and σy are the corresponding standard deviations. σxy is the

64

covariance between the reference and test images. C1 and C2 are constants to stabilize the

division. They should be proportional to the square of the maximum pixel

value [WBSS04].

The covariance can be computed as [WBSS04]:

σxy =
1

N − 1

i=N∑
i=1

(xi − µx)(yi − µy)

where xi and yi are the values of the ith pixel in the reference and test images respectively,

and N is the number of pixels in each image.

While SSIM could be computed over the whole image, it is more useful to compute it

over small blocks of the image and then average these values to produce a single SSIM

value for each frame [WBSS04]. The utility we used to compute the SSIM of our test

clips, qpsnr, computes the SSIM over each frame using 8x8 blocks in a tiled

manner [Ori10].

Because SSIM is a newer quality metric and there are multiple ways to compute it

over a given image, there is less agreement on what typical or reasonable SSIM values are.

However, our experience is that values below 0.8 indicate very poor quality.

SSIM has been shown to be superior to PSNR in gauging the effect of at least some

types of distortions [WBSS04] and has seen some acceptance in the literature

[RPB+08, WM08]. However, PSNR is still the default video quality metric at this time.

3.5 Experiment Configuration

This section examines the details of our experiments and discusses our reasons for

selecting these configurations.

3.5.1 Test Video Clips

We utilized two different video clips in our experiments representing two distinct

types of material. The first was a 12 minute movie clip taken from the movie “Tears of

65

Steel” [Hub12], a science fiction/action short film.13 Like most films of this type, this clip

featured a variety of sudden scene changes and action sequences.14 We were able to

procure this film in the completely uncompressed yuv format with a resolution of 1920 x

1080 and a frame rate of 25 frames per second.

The second clip consisted of five minutes of videoconference material that we

recorded ourselves. As is typical of most videoconference material, it contained no

significant changes in scene and consisted primarily of talking-head-type video.15 This

clip was created with a resolution of 1920 x 1080 at 25 frames per second. We found it

necessary, however, to utilize motion jpeg compression16 because of resource limitations

at capture time.

These two clips represent distinctly different types of video with distinct

characteristics. The sudden scene changes and complex action sequences contained in our

movie clip imply a very complex and extremely bursty video stream. This is because the

sudden scene changes will generate additional I-frames, and the variations in complexity

will affect the relative sizes of all frames. On the other hand, the lack of scene changes

and relatively small quantity of motion in our videoconference clip implies a relatively

simpler video stream that should be much smoother.

We consider both of these clips because both represent types of video that one may

desire to transmit in real-time. Linphone is designed for videoconferences and that is

probably the most obvious use for real-time video. However, applications may also desire

to transfer complex, high-motion video in real-time. Remote rendered video games are

just one example.

13 We downloaded this movie from https://media.xiph.org/tearsofsteel/ as a series of png images, one per
frame. We combined these png’s into a yuv video file using the ffmpeg utility from libav [Lib13].

14 This clip can be viewed at http://youtu.be/Yv71A73nx5E.
15 This clip can be viewed at http://youtu.be/I4bqcPzea00.
16 Motion jpeg compression simply applies jpeg compression to each frame independently [Wal91].

https://media.xiph.org/tearsofsteel/
http://youtu.be/Yv71A73nx5E
http://youtu.be/I4bqcPzea00

66

 0

 10

 20

 30

 40

 50

 60

 0 50 100 150 200 250 300

T
h

ro
u
g

h
p
u

t
(M

b
it
s
/s

e
c
)

Time (seconds)

Unconstrained Bandwidth Comparision

Movie Clip
Videoconference Clip

Figure 3.2: Bandwidth utilization for the first five minutes of our test clips in an

unconstrained environment with no competition.

To examine the difference in video complexity between our clips, we utilize two

different methods. The first is simply an analysis of the bandwidth used by our video clips

in an unconstrained environment with no other network traffic. In such a situation,

linphone’s bitrate control will not adjust the encoder’s target bitrate because there is no

loss. Hence, the only factor influencing the bandwidth of the video will be the video

encoder. We assume that higher bandwidth roughly translates to greater complexity.

Figure 3.2 examines the first five minutes of our two video clips using this method.

Our movie clip exhibits much greater variation in its bandwidth and, hence,

approximate complexity than our videoconference clip does. While our videoconference

clip stays within a 10Mbit window over pretty much its whole length, our movie clip

ranges from a few Kbits to 55Mbits, usually staying in the 8-30Mbit range. This implies

not only a higher peak complexity but also much larger variations in scene complexity.

67

In addition to this rather approximate examination, we consider the video complexity

of our clips using a set of metrics designed by the International Telecommunication Union

(ITU) as ITU-T Recommendation P.910 for use in gauging video complexity [Int99]. Two

separate metrics are specified, one considering the spatial complexity of each frame and

one examining the temporal complexity between frames.

The Spatial perceptual Information measurement (SI) filters each frame through a

Sobel filter17 and then computes the standard deviation across the filtered image. This

standard deviation is the SI measurement for the frame [Int99].

The Temporal perceptual Information measurement (TI) computes the difference

between the luminance values of corresponding pixels in consecutive frames. The

standard deviation of this difference across the entire image is the TI measurement for that

frame [Int99].

Figures 3.3a and 3.3b graph SI and TI, respectively, over the first five minutes of our

test clips. Notice that our movie clip not only exhibits much greater variation in its

complexity than our videoconference clip but also has higher average complexity. The few

points where our movie clip dips below our videoconference clip in spatial complexity

correspond to title sequences. Also of note is the number of scene changes in our movie

clip, as indicated by the number of sharp peaks in the temporal information graph.

17 A convolution of two 3x3 kernels over the luminance component of the image. See [CPM07] for details.

68

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000

S
p
a
ti
a
l
In

fo
rm

a
ti
o
n

Frames

Spatial Information Video Clip Comparision

Movie Clip
Videoconference Clip

(a) Spatial Perceptual Information

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0 1000 2000 3000 4000 5000 6000 7000

T
e
m

p
o
ra

l
In

fo
rm

a
ti
o
n

Frames

Temporal Information Video Clip Comparision

Movie Clip
Videoconference Clip

(b) Temporal Perceptual Information

Figure 3.3: Video complexity of the first five minutes of our test clips using the ITU-T

P.910 video complexity metrics.

69

3.5.2 Testbed Configuration

Our first experimental setup was a simple “dumbbell” test network as shown in

figure 3.4. Two machines were connected to a switch which was connected to a middle

machine doing packet capturing and bridging and then to another switch. This switch was

connected to two more machines. We ran a linphone videoconference between one pair of

these machines while the other pair supplied background TCP traffic using Iperf [Nat10].

Iperf sends a single, continuous stream of TCP traffic from a sender to a receiver; to

properly compete with our bidirectional videoconferencing traffic, we ran two Iperf tests

in opposite directions.

The pair of machines running the linphone videoconference were quad-core AMD

A8’s at 3.0GHz with 16GB of RAM running Ubuntu 12.04.2 LTS 64bit with kernel

3.2.0-39 and our patched DCCP module, as per section 3.3. Because we were playing

video into linphone from files and recording the received video, as well as doing the

normal video encoding and decoding for streaming, these machines needed significant

Figure 3.4: Our testbed environment

70

processing power. The pair of machines providing background traffic were hyperthreaded

Intel Pentium 4’s at 2.8GHz with 1GB of RAM each. These machines were running

Ubuntu 12.04.2 LTS 32bit with kernel 3.2.0-38.

The middle box was a hyperthreaded Intel Pentium 4 at 3.0GHz with 1GB of RAM

running FreeBSD 9.1 32bit and setup to bridge traffic between the two switches. We

utilized ipfw [The13], the FreeBSD firewall utility, to artificially limit bandwidth and

introduce delay on this link. Packet capturing was done just prior to this bandwidth limit

using tcpdump [Tcp13].

In our tests, we limited the link bandwidth to 10Mbits/sec and introduced an artificial

10ms delay at the middle link, bringing the round trip time between our test machines to

about 22ms. Since a linphone video conference typically uses between 8-10Mbits/sec, the

bandwidth constraint of 10Mbits/sec forces the video stream to compete heavily with

TCP, which enables us to meaningfully evaluate the fairness between linphone’s video

stream and TCP. The 10ms delay brings the round trip more in line with the traversal of a

large local area network. We then ran a linphone videoconference between one pair of

machines while also running Iperf in both directions between the other pair of machines.

This roughly simulates a severely congested local area network.

Our tests were operated from a shell script on one of the machines that launched ssh

sessions to initiate the iperf connections and the linphone video conference. This ensured

close synchronization between linphone and iperf.

We performed tests with both our 12 minute movie clip and our 5 minute

videoconference clip over UDP, DCCP CCID 2, and DCCP CCID 3. Each of these

configurations was repeated ten times. The repetitions occurred in two batches, first a

batch of three and then a batch of seven, separated by several weeks and represent samples

over at least a five hour period. In total, 2 hours of movie clip video and 50 minutes of

videoconference material were transferred per protocol.

71

3.5.3 Short Distance Internet Configuration

Our second experimental setup consisted of the same pair of quad-core AMD A8’s,

located in our lab, obtaining IPv6 connectivity via 6in4 tunnels from Hurricane

Electric [Hur13]. The remote endpoint for both tunnels was at the same site in Virginia.

Using this setup, we could route IPv6 traffic from one machine in our lab to Virginia using

one tunnel and then immediately back to the other machine in our lab using the other

tunnel.

Since the traffic in these tunnels traveled the standard IPv4 Internet between our lab

in Ohio and Virginia, this setup allowed us to test the performance of DCCP and UDP in a

fairly short distance Internet environment. The round trip time in this configuration was

roughly 56ms, a fairly typical value for short distance Internet connections. There are no

bandwidth limits placed on Hurricane Electric tunnels; the only bandwidth limits in this

test come from any traffic shaping that may be occurring on the path and the congestion

control algorithm under test. In practice, we observed bandwidth in excess of 30Mbits/sec

between our test systems.

Our tests in this environment consisted of running a linphone videoconference

between these machines while simultaneously running Iperf [Nat10] tests in both

directions and measuring ping times. The Iperf tests ran on the same machines as linphone

in order to have access to the IPv6 tunnels and gauge what a reasonable share of the

bandwidth was in this environment.

Much like our testbed environment, we ran tests with both our 12 minute movie clip

and our 5 minute videoconference clip. For each of these videos, we ran tests using DCCP

CCID 2, DCCP CCID 3, and UDP. Each of these configurations was repeated ten times.

The repetitions occurred in two batches, first a batch of three and then a batch of seven,

separated by several weeks and represent samples over at least a five hour period.

72

3.5.4 Long Distance Internet Configuration

Our last experimental setup consisted of these same two machines, again using IPv6

tunnels. However, this time one endpoint was in Virginia and the other was in California.

Using this setup, we could send IPv6 traffic from one machine in our lab to Virginia using

one tunnel, then across the IPv6 Internet to California, and then back to the other machine

in our lab via the other tunnel.

The round trip time in this configuration was roughly 178ms, which is quite good for

traveling most of the way across the country and back. The purpose of this experimental

configuration was to examine the performance of DCCP and UDP for long distance

Internet connections and to examine how performance changes relative to our previous,

shorter round trip time, tests. Once again, there are no explicit bandwidth limits in this

configuration.

Our tests again consist of running a linphone videoconference while also running

Iperf [Nat10] in both directions and recording the ping times between machines. Because

of the longer round trip time in this configuration, we found it necessary to introduce a

constraint on how often bitrate updates could be performed. To determine this parameter,

we performed a set of tests, using our movie clip, with bitrate update intervals between

40ms (framerate) and 6000ms. We ultimately settled on 3000ms for CCID 2 and 1000ms

for CCID 3.

With the bitrate update interval determined, we ran tests using both our 12 minute

movie clip and our 5 minute videoconference clip over DCCP CCID 2, DCCP CCID 3,

and UDP. Each of these configurations was repeated ten times using a batched pattern

similar to our previous configurations. Our results are presented in the next chapter.

73

4 Results and Discussion

This chapter presents our experimental results and offers analysis and discussion. We

have grouped our results based on the experimental setup and video clip used.

4.1 Testbed Experiments

We start by examining our testbed experiments. This simple environment should

provide us with a good understanding of DCCP’s basic behavior. In addition, this

environment is, by design, our most congested configuration, allowing us to observe how

DCCP and UDP/RTP react to extreme congestion.

4.1.1 Movie Clip

Recall that our testbed environment was a standard “dumbbell” network with two

machines on either end connected to a switch and a middle machine doing packet

capturing and bandwidth limiting. Our tests consisted of a linphone video conference

between two machines while the other two machines supplied background TCP traffic.

The middle machine capped the bandwidth at 10Mbits/sec and introduced enough delay to

make the round trip time about 22 milliseconds. Each test ran for 12 minutes, the length of

our movie clip.

Figures 4.1 and 4.2 show Cumulative Distribution Functions (CDFs) of the received

video quality in our tests using PSNR and SSIM, respectively. These graphs plot video

frame quality versus the probability of receiving video frames with up to that quality.

Each of these cumulative distribution functions is an average of the CDFs for 10 separate

test runs, or 2 hours of video. The error bars shown at 0.1 probability intervals indicate the

95% confidence interval.

As can be seen, both DCCP CCIDs achieve better video quality than UDP by a

consistent 3-5dB PSNR. CCID 3 typically performs better than CCID 2. Taking the

74

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of PSNR for the Movie Clip in our Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.1: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by PSNR, for our movie clip in our testbed environment. Error bars

indicate the 95% confidence interval.

20-40dB PSNR range as the range of reasonable video quality,18 UDP spends about 21%

of its time sending unwatchable video while CCID 2 sends unwatchable video about 18%

of the time and CCID 3 only 16% of the time. This is a fairly modest, but not

insignificant, improvement.

Note also that CCID 2 varies between being similar to UDP at higher probabilities,

then achieving identical performance to CCID 3 around a probability of 0.3 and then

swinging back to be worse than UDP below 0.1 probability. The first swing occurs

because, as we will discuss in detail later on, linphone is much more conservative in

increasing its sending rate when using CCID 2. This results in CCID 3 outperforming

CCID 2 throughout the upper portion of these graphs. Towards a probability of 0.3, the

18 See section 3.4.1 and [Goo05, Sea04].

75

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty

SSIM

CDFs of SSIM for the Movie Clip in our Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.2: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by SSIM, for our movie clip in our testbed environment. Error bars

indicate the 95% confidence interval.

better congestion control of both CCIDs shows its advantage and even CCID 2 does much

better than UDP. CCID 2’s final swing back below UDP occurs because CCID 2 is much

harsher in its reaction to congestion than CCID 3 and this can cause additional video

artifacts as linphone tries to catch up.

The SSIM CDFs, figure 4.2, tell a similar story. DCCP achieves better quality than

UDP over nearly the whole graph, with CCID 3 performing better than CCID 2. Similarly

to the PSNR CDFs, we see CCID 2 swing from similar to UDP to nearly matching

CCID 2 and then back.

To help clarify the relationship between PSNR, SSIM, and perceived video quality,

figure 4.3 shows several video frames with their PSNR and SSIM values.19 You will notice

19 An example of the video received over UDP can also be viewed at http://youtu.be/KXkpTm6PGaQ.

http://youtu.be/KXkpTm6PGaQ

76

(a) 20dB PSNR, 0.73 SSIM

(b) 30dB PSNR, 0.87 SSIM

(c) 40dB PSNR, 0.98 SSIM

Figure 4.3: Examples of the quality implied by different PSNR and SSIM values. These

frames are taken from our UDP movie clip tests in our testbed environment.

77

that the 20 dB PSNR frame exhibits severe distortion while the 30 dB frame exhibits only

a few slight compression artifacts, and the 40 dB frame contains no noticeable issues.

In addition to examining quality using metrics like PSNR and SSIM, it is useful to

examine the types of visual artifacts that commonly occur in received video and how they

differ between DCCP and UDP. These common artifacts include partial I-frames, lost

motion vector data, and undecodable frames. Partial I-frames occur when a large

contiguous chunk of an I-frame is lost, often because DCCP overflowed its send queue or

because a router queue overflowed and dropped a contiguous set of packets. Figure 4.4b

shows an example of a partial I-frame. Because P-frames are derived from the information

(a) Original (b) Corrupted (Partial I-frame)

(c) Original (d) Corrupted (Lost Motion Vector Data)

Figure 4.4: Examples of visual artifacts resulting from packet loss.

78

in the preceding I-frame, this visual artifact propagates through the succeeding P-frames

up until the next I-frame.

Lost motion vector data occurs when the motion vector data in a P-frame is lost either

because of a network drop or DCCP send queue overflow. This usually results in the

doubling or distortion of the moving objects in a frame as seen in figure 4.4d. These

artifacts persist until overwritten by later motion vector data or the next I-frame.

Fortunately, areas of motion tend to be in motion over several frames so later motion

vectors often correct these artifacts fairly quickly.

The final visual artifact that occurs in received video is undecodable frames. These

are frames that the MPEG-4 decoder, for whatever reason, is unable to decode so they are

simply skipped. A single undecodable frame is usually invisible to the human visual

system [CZM+10]; however, it represents a severe error in the bitstream, typically the loss

of a critical header. MPEG-4 utilizes resynchronization markers and reversible variable

length codes to recover from most errors. Further, texture or motion vector data can

simply be skipped over if it cannot be decoded. MPEG-4 headers, like the VOP header or

the GOV header, however, cannot simply be skipped if they cannot be decoded; their loss

renders the frame undecodable. Such headers usually occur at the beginning of the frame,

and their loss tends to indicate severe congestion since the last frame still has not drained

from the network.

DCCP, particularly CCID 2, results in noticeably more partial I-frames than UDP and

distinctly fewer motion vector data losses. This is because I-frames are much larger than

P-frames and so are significantly more likely to overflow DCCP’s send queue and be

rejected. Table 4.1 shows that both DCCP CCIDs achieve significantly reduced network

losses compared to UDP but reject a significant number of packets because of send queue

overflow. The reduced network losses will reduce the number of short, random losses

while the send queue overflows will tend to occur in the larger I-frames. This will cause a

79

Table 4.1: Packet Statistics for our Movie Clip in our Testbed Environment

Sent Packets Received % Received Lost % Lost Rejected % Rejected

UDP 159713 143374 89.77% 16339 10.23% 0 0.00%

CCID 2 245283 164856 67.21% 952 0.39% 79473 32.40%

CCID 3 247909 235735 95.09% 7111 2.87% 5063 2.04%

predominance of partial I-frames, particularly for CCID 2, where rejected packets

outnumber network losses by about two orders of magnitude.

The more frequent occurrence of partial I-frames produces rather hard to characterize

effects on the received video. The loss of motion vector data usually results in some sort

of doubling of the moving component, as in figure 4.4d, making it very difficult to follow

the motion and understand what is going on in the scene. By contrast, the occasional

partial I-frame can be preferable because the scene is either consistent or not present. This

is especially true when using DCCP, where a rejected packet will quickly result in a rate

reduction and a new I-frame, which will refresh the scene.

In addition to more partial I-frames, DCCP also results in more undecodable frames

than UDP, as table 4.2 shows. Streaming video over CCID 3 results in a minor increase in

Table 4.2: Frame Statistics for our Movie Clip in our Testbed Environment.

This table shows the total number of I-frames sent and the total number of undecodable

frames received as well as percentages for each.

Total Frames I-frames % I-frames Undecodable % Undecodable

UDP 17957 375 2.09% 629 3.50%

CCID 2 17953 1398 7.79% 1685 9.39%

CCID 3 17961 1566 8.72% 869 4.84%

80

undecodable frames over UDP while using CCID 2 results in nearly three times as many.

DCCP’s send queue is a simple FIFO queue20 so attempting to send a frame on a nearly

full queue, which could happen because the previous frame was a large I-frame or because

DCCP just slowed down, will result in DCCP rejecting almost all packets in the frame,

including those containing the critical frame headers necessary for decoding. Fortunately,

the human visual system is not particularly sensitive to frame rate so end users will not

usually notice the occasional missing frame [CZM+10].

It is interesting to note that CCID 2 achieves better video quality despite its miserable

32% packet rejection rate and nearly 10% undecodable frame rate. This makes sense since

a loss will result in CCID 2 suddenly halving its sending rate; the first indication the

application will have of this lower sending rate is the send queue overflowing. Even

presuming the application reacts to this overflow instantly, the rate change will not take

effect until the next frame. Worse, this next frame will be a large I-frame. This will result

in the loss of a very large chunk of a frame; whatever makes it through is unlikely to be

decodable.

CCID 3 avoids a large rejection rate by its TFRC design and sending rate socket

option. Part of the design goal of TFRC was to avoid the sudden rate changes involved in

AIMD congestion control, like CCID 2. Since CCID 3 gets feedback once each round trip

time, which in this environment is very close to the time between frames, a packet loss

will result in a small reduction in sending rate during the next frame instead of a drastic

halving. In addition, CCID 3 exposes its current sending rate via a socket option allowing

the application to detect the slow down and reduce its sending rate before the send queue

overflows, avoiding a massive burst of loss. This socket option also allows the application

to speed up as soon as CCID 3 increases its sending rate.

20 See section 3.2.1 for a detailed discussion of DCCP’s send queue.

81

CCID 3, however, suffers an almost 3% network loss rate, as shown in table 4.1,

compared to CCID 2’s 0.39% network loss rate. While it seems reasonable that CCID 3

would have a higher loss rate than CCID 2 because it is designed to be somewhat less

harsh in reducing its throughput, an order of magnitude difference in loss rate seems

higher than expected.

We utilize Mathis’s model of TCP throughput from [MSMO97] as a quick sanity

check on CCID 3’s behavior. With a network loss rate of 3% and an round trip time of

20ms, this model indicates that TCP would achieve roughly 3.3Mbits/sec in this situation.

That lines up nicely with CCID 3’s average throughput of 3.52Mbits/sec. Since CCID 3 is

designed to compete reasonably fairly with TCP, it would appear that CCID 3 is behaving

reasonably. Given that CCID 2 only achieves 2.37Mbits/sec with a 0.39% loss rate, this

analysis indicates that CCID 2 is not limited by network loss rate. We will examine this

issue in great detail later on.

We now turn to consider another important piece of DCCP’s performance; its

throughput relative to UDP. Figure 4.5 shows representative examples of the throughput

achieved by UDP, CCID 2, and CCID 3 while streaming our movie clip. The most

obvious feature of this graph is the large spike in UDP’s throughput at the beginning of the

clip. This occurs because linphone initializes the video encoder to the maximum allowed

bitrate. This maximum bitrate is user configurable, but is hidden deep within the

application settings. We used a value of 100Mbits/sec in all of our experiments so that it

would not interfere with the congestion control algorithms. While for this configuration

that is much too high, we argue that a maximum bitrate much greater than the network

could sustain is a common case; users are not likely to adjust this setting based on the

network environment they are in and application authors will not artificially limit how

well their applications can perform.

82

 0

 5

 10

 15

 20

 25

 30

 0 100 200 300 400 500 600 700

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
)

Time (seconds)

Throughput Comparision of Movie Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.5: Throughput achieved by UDP, CCID 2, and CCID 3 over our 12 minute movie

clip in the testbed environment.

This large spike, then, represents the time it takes for linphone’s UDP/RTP

congestion control to reduce the codec’s bitrate to an acceptable level. This reduction

takes roughly one minute; far too long for a single application to be congesting the

network. Any other network traffic unfortunate enough to be already running when such a

video stream starts will experience terrible throughput for well over a minute. If this other

traffic were interactive, another video stream for instance, the user impact would be

substantial. DCCP, by contrast, exhibits no such spike because both CCID 2 and CCID 3

utilize a form of slow start, a very low initial sending rate with an exponential increase as

the connection continues. This algorithm enables DCCP to quickly finding the optimal

sending rate without drastically exceeding it.

In order to examine throughput behavior once the connection enters a steady state,

figure 4.6 shows a close up of the same throughput graph, focusing on the 0-9Mbit/sec

83

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 100 200 300 400 500 600 700

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
)

Time (seconds)

Zoomed Throughput Comparision of Movie Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.6: More detailed look at the variation in throughput of UDP, CCID 2, and CCID 3

using our movie clip in our testbed environment.

range. Interestingly, this figure shows that CCID 2 and UDP actually exhibit very similar

throughput patterns while CCID 3 has a much more volatile rate with a higher average.

This more volatile sending rate occurs because an application using CCID 3 can

determine its exact allowed sending rate, allowing the application to follow this rate

quickly as it varies. Both CCID 2 and UDP basically guess their allowed sending rate by

slowly increasing their bitrate when they have not observed lost or rejected packets for

quite a while. This results in a much smoother increase but a reduced ability to take full

advantage of available bandwidth.

Distinctly related to the relative throughput of UDP and DCCP is the idea of fairness

to other network traffic. Fairness is a crucial requirement for network traffic, particularly

high bandwidth traffic like these video conferences, and is one of the main goals of

congestion control.

84

 0.5

 2

 0.1

 1

 10

 100

 0 100 200 300 400 500 600 700

F
a

ir
n

e
s
s
 R

a
ti
o

 (
P

ro
to

c
o

l/
T

C
P

)

Time (seconds)

Fairness Comparision of Movie Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.7: Average fairness of UDP, CCID 2, and CCID 3 to TCP over our 12 minute

movie clip in the testbed environment. Error bars indicate the 95% confidence interval.

Figure 4.7 examines the average fairness of UDP, CCID 2, and CCID 3 to TCP over

all our experiments with the movie clip in this environment. The error bars at 50 second

intervals indicate the 95% confidence interval. The fairness metric used here is a simple

ratio of protocol throughput/tcp throughput, so 1 is perfect fairness, 2 indicates that

protocol is using twice as much bandwidth as TCP, and 0.5 indicates the opposite.

Because of the range of fairness values over these connections, we plot the fairness ratio

on a log scale.

The first thing to notice from this graph is the massive unfairness that linphone’s

UDP/RTP congestion control exhibits at the beginning of the connection. This

corresponds with the our observations from the throughput graphs. Apparently, linphone’s

UDP/RTP congestion control allows the videoconference to overwhelm any competing

85

traffic at the beginning of the connection. Worse, UDP/RTP takes nearly 50 seconds to get

this behavior under control.

The Internet community has traditionally defined acceptable fairness between two

network flows to be achieving throughput within a factor of two of each

other [WH06, FHPW08]. From figure 4.7 it is clear that UDP, after the initial 60 seconds,

is less aggressive than needed to achieve reasonable fairness with TCP. CCID 2 is in a

similar boat, achieving reasonable fairness only occasionally. CCID 3, meanwhile,

maintains much more even competition with other network flows. In fact, over all of our

tests, CCID 3 maintained an average fairness ratio of 0.91, well within acceptable fairness.

For our movie clip, both DCCP CCIDs achieve better video quality than UDP. When

visual artifacts do occur, DCCP tends to cause partial I-frames while UDP usually

experiences lost motion vector data. CCID 2 manages to achieve better quality than UDP

despite rejecting nearly a third of all packets that linphone tries to send. We have also

observed that linphone’s UDP/RTP congestion control causes a very large throughput

spike on connection startup.

4.1.2 Videoconference Clip

We now turn to consider our videoconference clip in our testbed environment. These

experiments follow exactly the same procedure as our movie clip experiments:

“dumbbell” testbed network with a 10Mbit/sec bandwidth constraint at the middle node.

One pair of machines runs a linphone videoconference with our video clip while the other

pair supplies background TCP traffic using iperf. The only difference is that this video clip

is only five minutes long.

Figures 4.8 and 4.9 show cumulative distribution functions of the received video

quality over UDP, DCCP CCID 2, and DCCP CCID 3 using the PSNR and SSIM metrics.

These graphs are average CDFs for ten experiments and contain error bars indicating the

86

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of PSNR for Videoconference Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.8: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by PSNR, for our videoconference clip in our testbed environment.

Error bars indicate the 95% confidence interval.

standard deviation at 0.1 probability intervals. Notice that both DCCP CCID’s achieve

better quality than UDP, with CCID 3 performing the best. This indicates that DCCP’s

more responsive congestion control provides noticeable improvements in this

environment. DCCP’s maximum improvement over UDP occurs in the low to middling

quality range, where DCCP exhibits a much lower and sharper “knee” that UDP does.

DCCP is at least three times less likely to deliver unwatchable video (<20 PSNR) and

increases the percentage of video above 30 PSNR by either 10 or 22 percentage points

depending on CCID.

Interestingly, the SSIM CDFs show a much sharper divergence between UDP and

DCCP in the bottom 10%. This implies that UDP suffers from a loss of primarily

structural information at these poor qualities while DCCP does not. This is consistent with

87

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty

SSIM

CDFs of SSIM for Videoconference Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.9: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by SSIM, for our videoconference clip in our testbed environment.

Error bars indicate the 95% confidence interval.

a loss of motion vector information from random, network losses, resulting in distortion

and duplication of the moving objects.

Figure 4.10 shows several video frames with their PSNR and SSIM values. You will

notice that the 20 dB PSNR frame exhibits significant corruption while the 30 dB frame

exhibits only a few slight minor artifacts, and the 37 dB frame contains no noticeable

issues. Notice also that 0.8 SSIM is very poor quality while an SSIM value of 0.97

indicates no noticeable artifacts.

Comparing figure 4.8 with figure 4.1, the CDFs of PSNR for our movie clip, we

observe that overall video quality for all protocols is higher for our videoconferencing clip

than our movie clip. Given that videoconference material is distinctly less complex than

88

(a) 20dB PSNR, 0.80 SSIM

(b) 30dB PSNR, 0.93 SSIM

(c) 37dB PSNR, 0.97 SSIM

Figure 4.10: Examples of the quality implied by different PSNR and SSIM values. These

frames are taken from our UDP videoconference clip tests in our testbed environment.

89

multi-scene, action movie material this makes sense. For a given allowed sending bitrate

the lower complexity video can be encoded at higher quality.

It is interesting to note that both CCIDs achieve the same peak video quality, but

diverge rapidly. This at least partly due to the fact that CCID 2 has no way to alert the

application to slow down before the sending queue overflows and visual artifacts are

induced. In fact, we observe that CCID 2 rejects 9.89% of all packets that the application

tries to send. CCID 3, as mentioned previously, makes its computed sending rate available

to applications via a socket option allowing them to adjust their rate without the send

queue overflowing.

In addition, this socket option means that linphone knows exactly when it is allowed

to speed up when using CCID 3 while it has to heuristically guess when using CCID 2.

This results in linphone sending roughly 1.5Mbit/sec faster on average when using CCID 3

than when using CCID 2. Hence, CCID 2 achieves lower quality because it is sending at a

lower bitrate. This further contributes to the divergence between CCID 2 and CCID 3.

Having examined the differences in video quality between UDP, CCID 2, and

CCID 3, we now turn to consider the network throughput achieved by these protocols and

how it varies with time. Figure 4.11 plots throughput over time for a set of example video

streams over UDP, CCID 2 and CCID 3 with our videoconference clip in this

environment. Just as in our movie clip experiments, UDP exhibits a large spike in sending

rate for the first minute of the connection. This occurs as linphone’s UDP/RTP congestion

control converges to an acceptable sending rate for the network conditions. As before, this

large burst of throughput posses a significant problem for fairness with competing traffic.

Figure 4.12 shows a close up of the 0-7Mbit/sec portion of this same example

throughput graph to better illustrate the throughput of these protocols after UDP stabilizes.

From this graph we observe that CCID 3 not only sends faster in general but also changes

its sending rate much more rapidly than CCID 2. Since CCID 3’s TFRC congestion

90

 0

 5

 10

 15

 20

 25

 0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
)

Time (seconds)

Throughput Comparision of Videoconference Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.11: Throughput achieved by UDP, CCID 2, and CCID 3 over our 5 minute

videoconference clip in the testbed environment.

 0

 1

 2

 3

 4

 5

 6

 7

 0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
)

Time (seconds)

Zoomed Throughput Comparision of Videoconference Clip in Testbed Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.12: More detailed look at the variation in throughput of UDP, CCID 2, and CCID 3

using our videoconference clip in our testbed environment.

91

control is designed to be less aggressive in adjusting its throughput than either CCID 2 or

TCP, this must be the result of linphone adjusting its sending rate to follow the

fluctuations in CCID 3’s allowed sending rate while CCID 2 follows only the large scale

trends in allowed sending rate. We can confirm this by noting that table 4.3 shows CCID 3

sending almost three times as many I-frames as CCID 2. This implies significantly more

rate changes since linphone’s video codec issues a new I-frame every time the target

sending rate is changed.

Figure 4.12 also provides a nice example of linphone’s UDP/RTP congestion control.

The sending rate starts high and is brought under control after roughly a minute. Then 50

seconds (10 five second RTCP reports) of stable operation pass. At that point, the

congestion control begins to increase the sending rate linearly until the loss rate exceeds

10%. A decrease phase then begins reducing the loss rate to under 10%. The two plateaus

in throughput at 40-60 seconds and 225-250 seconds are unexpected, however. These

likely correspond to points where the video maintains a loss rate just under 10% until a

large motion event occurs, at which point the loss rate jumps above 10% and linphone

slows down further.

We now turn to examine the fairness of our video streams to other network traffic.

Figure 4.13 shows the average fairness of video streaming over UDP, CCID 2, and

CCID 3 to background TCP traffic for all our video conference testbed experiments. The

Table 4.3: Frame Statistics for our Videoconference Clip in our Testbed Environment

Total Frames I-frames % I-frames Undecodable % Undecodable

UDP 7476 110 1.47% 869 11.62%

CCID 2 7479 252 3.37% 244 3.26%

CCID 3 7476 650 8.69% 155 2.07%

92

 0.5

 2

 0.01

 0.1

 1

 10

 100

 1000

 0 50 100 150 200 250 300

F
a

ir
n

e
s
s
 R

a
ti
o

 (
P

ro
to

c
o

l/
T

C
P

)

Time (seconds)

Fairness Comparision of Videoconference Clip in Testbed Environment

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.13: Average fairness of UDP, CCID 2, and CCID 3 to TCP over our 5 minute

videoconference clip in the testbed environment. Error bars indicate the 95% confidence

interval.

error bars at 50 second intervals indicate the 95% confidence interval at those locations.

We again use the fairness ratio, protocolthroughput/tcpthroughput, as our fairness

metric. Because of the range of fairness values over these connections, we plot the

fairness ratio on a log scale.

The most immediately noticeable feature of this figure is the massive unfairness that

linphone’s UDP/RTP congestion control exhibits at the beginning of the connection. This

corresponds to the large spike in throughput we observed in our throughput graphs.

Clearly, UDP/RTP congestion control allows the application to completely overwhelm any

competing traffic. Worse, UDP/RTP takes nearly 50 seconds to get this behavior under

control.

93

Another interesting feature of figure 4.13 is the similarity in fairness between UDP

and CCID 2 after the initial 80 seconds. Both protocols achieve throughput that is a factor

of eight or so less than the competing TCP flows. This likely stems from the mechanism

these protocols use to increase their bitrate at the application level. Both slowly increase

their video bitrate at the same rate after 50 seconds of good network conditions. These

video flows are competing against TCP flows with essentially unlimited data to send so

TCP will utilize any free bandwidth within a few dozen round trip times, much faster than

linphone will increase the video bitrate. Hence the unfairness that we observe.

Recall that acceptable fairness between two network flows is generally understood to

be achieving throughput within a factor of two of each other [WH06, FHPW08]. From

figure 4.13 it is abundantly clear that CCID 2 and UDP, after the initial 80 seconds, are

significantly less aggressive than needed to achieve reasonable fairness with TCP.

Although, in CCID 2’s case, being more aggressive would probably not help quality since

CCID 2 already rejects 9.89% of the packets linphone attempts to send.

CCID 3, meanwhile, maintains much more even competition with other network

flows. In fact, over all of our tests, CCID 3 maintained an average fairness ratio of 0.59,

just within our definition of acceptable fairness. The smoother responses of CCID 3 and

its sending rate socket option once again show benefit.

Stepping back to consider all of our testbed experiments, DCCP CCID 3 seems to be

the clear winner. It not only achieves better video quality and higher throughput, but also

results in better fairness to competing traffic. CCID 2 achieves better video quality than

UDP, but suffers from an API limitation in the Linux implementation that forces the

application to guess when it can speed up and from a sudden, harsh response to packet

loss that occurs more quickly than the application can adjust.

94

4.2 Short Distance Internet Experiments

Our short distance Internet experiments occurred in a realistic Internet environment

with a round trip time of about 56ms, fairly typical for a connection traversing a few

hundred miles. In this environment, our video streams competed with a variety of types of

background traffic with varying round trip times and constantly changing bandwidth

demands.

4.2.1 Movie Clip

Recall that our short distance Internet environment consisted of two hosts in our lab

with IPv6 tunnels to endpoints located in Virginia. Traffic traveled from our lab in Ohio to

Virginia over one tunnel, and then into the other tunnel and back to our lab. Each test

consisted of a linphone videoconference between these two machines along with Iperf

TCP connections in both directions to measure fairness. The tests ran for the full 12

minutes of our movie clip.

Figures 4.14 and 4.15 compare the received video quality, measured using PSNR and

SSIM respectively, for tests using UDP, CCID 2, and CCID 3. These figures show average

cumulative distribution functions of the video quality from ten test runs for each

configuration. The error bars shown at 0.1 probability intervals indicate the 95%

confidence interval. Observe that UDP achieves moderately better quality on average but

has a larger low quality tail than either DCCP CCID. This is consistent between PSNR

and SSIM, although UDP’s higher quality persists for a few more percentage points when

measuring with SSIM instead of PSNR.

The much smaller tail of the DCCP cumulative distribution functions, and tighter

confidence intervals, mean that DCCP achieves much more even video quality and fewer

visual artifacts than UDP. This is actually a significant benefit since evenness of received

95

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of PSNR for the Movie Clip in our Short Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.14: Average cumulative distribution functions of UDP, CCID 2, and CCID 3

video quality, as measured by PSNR, for our movie clip in the short distance Internet

environment. Error bars indicate the 95% confidence interval.

video is an important quality. At least one author has found that the evenness of video

quality is more important than absolute quality [PG06].

This smaller tail is due to the much more responsive congestion control of DCCP

reducing the network loss rate. As table 4.4 shows, UDP has a much higher loss rate than

either DCCP CCID, which results in a much greater number of visual artifacts and a large,

low quality tail. As we shall see shortly, while CCID 2 has a large rejection percentage,

much of that loss occurs in very large bursts that render several frames undecodable

instead of introducing visual artifacts.

The lower network loss rate of DCCP is beneficial not only to the video stream itself

but also to other network traffic on the link. This is not only because less data is dropped

in total but also because most network flows utilize some form of congestion control that

96

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty

SSIM

CDFs of SSIM for the Movie Clip in our Short Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.15: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by SSIM, for our movie clip in the short distance Internet environment.

Error bars indicate the 95% confidence interval.

reduces their throughput in the presence of loss. As a result, reducing the loss rate results

in increased throughput for most protocols, especially TCP.

That said, UDP still achieves higher quality than either DCCP CCID the majority of

the time. This turns out to be because it achieves significantly larger network throughput,

Table 4.4: Packet Statistics for our Movie Clip in the Short Distance Internet Environment

Sent Received % Received Lost % Lost Rejected % Rejected

UDP 1383187 1357927 98.17% 18724 1.35% 0 0.00%

CCID 2 333748 307487 92.13% 89 0.03% 26171 7.84%

CCID 3 442706 439909 99.37% 800 0.18% 1995 0.45%

97

16.52Mbits/sec on average, instead of CCID 2’s 3.55Mbits/sec or CCID 3’s 5.13Mbits/sec.

The information on network conditions in table 4.4 sheds some light on this situation.

From table 4.4 we see that CCID 2 rejects, because of send queue overflow, almost

8% of the packets that the application attempts to send. Hence, it is not surprising that

CCID 2 does not achieve better throughput. That rate of send queue overflow would seem

to imply issues between CCID 2 and the application’s bitrate control. In fact, from

Mathis’s TCP throughput model in [MSMO97] we can determine that a TCP connection

in this situation with a 0.03% loss rate, like CCID 2, should be able to achieve throughput

of about 10Mbits/sec. As CCID 2’s congestion control algorithm is nearly identical to

TCP’s, CCID 2 should be able to attain nearly identical throughput if it were being driven

perfectly.

 0

 2

 4

 6

 8

 10

 12

 14

 16

13:04:00 13:06:00 13:08:00 13:10:00 13:12:00 13:14:00

R
e

q
u

e
s
te

d
 B

it
ra

te
 (

M
b

it
s
/s

e
c
)

Time (date as hours:minutes:seconds)

Requested Bitrate for Movie Clip over DCCP CCID 2

Figure 4.16: Bitrate requested from the video encoder by linphone as a result of feedback

from CCID 2 in a representative experiment. This may or may not correspond to the bitrate

actually achieved by the video encoder or actual network throughput.

98

This issue here is that CCID 2 is very harsh in its bitrate decreases and linphone is

very gradual in its increases. This is clearly illustrated in figure 4.16. This figure shows

the bitrate that linphone requests from the video codec based on feedback from CCID 2

for a representative experiment. Note that the video codec may not follow this bitrate

perfectly because of limitations in the compressibility of the video. In this figure there are

a number of sharp drops in requested bitrate, corresponding to network losses. Notice that

these drops in bitrate are usually larger than the factor of two decrease that CCID 2

performs on a loss. Because the send queue has to overflow before linphone learns that it

needs to slow down, it must slow down more than theoretically necessary in order to drain

the queue to a usable level again. As the sending rate increases, this additional reduction

also increases, as illustrated by the large drop around 13:12:00. This is, of course,

compounded by the fact that a rate change requires sending a new I-frame, which is much

larger than the average frame.

Notice also that the increase in requested bitrate when using CCID 2 has a significant

idle period before beginning and occurs slowly relative to the round trip time of the

connection. This contributes to the low throughput achieved. Ideally, linphone should

request exactly the bitrate that CCID 2 can send; however, since linphone has no way to

discover this rate, it employs a slow increase mechanism as seen in this figure.

Interestingly, while the increase occurs slowly over time, the rate of increase is

exponential, which is almost certainly too fast; a linear increase would probably be more

appropriate. Recall that we reused linphone’s existing bandwidth increase algorithm with

CCID 2 since CCID 2 offers no indication of when the application could send faster. This

algorithm uses an exponential increase of 20% every 10 seconds21. By contrast, CCID 2

increases its sending rate in a linear manner at 1 packet every round trip. This mismatch

21 Strictly speaking, 20% every two RTCP report intervals. See section 2.2.2 for the full algorithm.

99

causes linphone to easily overshoot CCID 2’s available bandwidth, triggering a packet

rejection.

Thus this algorithm is both too conservative in the timing of the increases and too

aggressive in the rate of increase once it gets going. This results in the poor bandwidth

utilization that we have observed.

Returning to the difference in throughput between UDP and DCCP and table 4.4, we

can determine that CCID 3 achieves lower throughput than UDP for a different reason that

CCID 2, since it experiences sub-0.5% loss and rejection rates. For CCID 3, the limiting

factor turns out to be its congestion control algorithm, TFRC. Recall that TFRC uses an

equation to determine its allowed sending rate in such a way that it is fair to TCP.

 0

 2

 4

 6

 8

 10

 12

 14

 16

12:04:00 12:06:00 12:08:00 12:10:00 12:12:00 12:14:00

R
e

q
u

e
s
te

d
 B

it
ra

te
 (

M
b

it
s
/s

e
c
)

Time (date as hours:minutes:seconds)

Requested Bitrate for Movie Clip over DCCP CCID 3

Figure 4.17: Bitrate requested from the video encoder by linphone as a result of feedback

from CCID 3 in a representative experiment. This may or may not correspond to the bitrate

actually achieved by the video encoder or actual network throughput.

100

Since CCID 3 gives applications direct access to its computed sending rate via a

socket option, the bitrate that linphone requests is directly based off of the bandwidth that

CCID 3 would allow. Figure 4.17 shows this requested bitrate for CCID 3 in a

representative experiment. The most noticeable feature of this graph is the dramatic

variation in requested bitrate. CCID 3 seems to be all over the map here. A large part of

the issue is the bursty nature of the data transfer. The allowed sending rate is limited to at

most twice the rate that CCID 3 received data in the last round trip, which is, in turn, based

off the size of the previous few frames. Since frame sizes vary frame to frame, so does the

received rate for the previous round trip and, hence, the current allowed sending rate.

Another important factor in CCID 3’s allowed sending rate is the round trip time of

the connection. Figure 4.18 shows the experienced round trip for the same sample

connection as figure 4.17. Notice the significant amount of variation, in part because of

the bursty nature of the video stream resulting from size variations between P-frames and

 40

 60

 80

 100

 120

 140

 160

12:04:00 12:06:00 12:08:00 12:10:00 12:12:00 12:14:00

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Time (date as hours:minutes:seconds)

Round Trip Time for Movie Clip over DCCP CCID 3

Network RTT
Smoothed RTT

Figure 4.18: Round trip times experienced by a sample CCID 3 connection while streaming

our movie clip through the short Internet environment.

101

the relative size difference between I and P-frames. In order to combat this, CCID 3 uses a

low pass filter to smooth the round trip time. This filter is as follows [FHPW08]:

RTT = q ∗ RTT + (1 − q) ∗ RTT S ample

where q = 0.9 is recommended. This is the same round trip time smoothing algorithm

used in TCP with great success. We have also plotted this smoothed round trip time

in 4.18 and still observe noticeable variation. Note that CCID 3 only sends feedback from

receiver to sender once per round trip time and these return packets are required for an

round trip time sample. This means that CCID 3 obtains only a small fraction of the round

trip time samples that TCP could obtain. Fewer samples imply a less accurate round trip

time value, particularly when there is high variation.

Because of these issues, neither DCCP CCID achieves the throughput that UDP is

able to reach. As a result, UDP is able to achieve higher video quality, although, as noted

earlier, it has a much larger tail of poor quality video.

4.2.2 Videoconference Clip

The experiments with our videoconference clip follow exactly the same procedure.

Our five minute video conference clip is streamed between two machines in our lab with

IPv6 tunnels such that traffic traveled from our lab to Virginia and back to our lab.22 We

ran Iperf flows in both directions along with our video streams in order to measure

fairness.

Figures 4.19 and 4.20 show cumulative distribution functions of video quality, as

measured by PSNR and SSIM respectively, for video streams over UDP, CCID 2, and

CCID 3 in this environment. Each cumulative distribution function is averaged over ten

experimental runs. The error bars shown at 0.1 probability intervals indicate the 95%

confidence interval. These figures show that UDP achieves better video quality than either
22 An example of the video received over CCID 3 can be viewed at http://youtu.be/2YhofRUzLDQ.

http://youtu.be/2YhofRUzLDQ

102

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of PSNR for Videoconference Clip in Short Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.19: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by PSNR, for our videoconference clip in the short distance Internet

environment. Error bars indicate the 95% confidence interval.

DCCP CCID about 68% of the time. Below a probability of 0.4 an interesting low quality

bulge occurs in UDP’s PSNR CDF and, to a much lesser extent, its SSIM CDF.

Nearly identical low quality bulges in UDP’s CDFs also occur in our long distance

Internet environment while streaming our videoconference clip. For that reason, we defer

detailed discussion of the causes of these bulges until section 4.4.2. Suffice it to say that

UDP packet losses and receive queue overflows cause the loss of texture data in I-frames

which results in visual artifacts that persist for quite some time.

As indicated by this low quality bulge, both DCCP CCIDs achieve much more even

video quality than UDP does. Notice also that both CCIDs have smaller standard

deviations that UDP does. Although neither CCID is able to achieve the same peak video

103

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty

SSIM

CDFs of SSIM for Videoconference Clip in Short Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.20: Average cumulative distribution functions of UDP, CCID 2, and CCID 3

video quality, as measured by SSIM, for our videoconference clip in our short Internet

environment. Error bars indicate the 95% confidence interval.

quality that UDP does, both CCIDs achieve very even video quality over 95% of the video

stream.

UDP achieves better peak video quality because it achieves a much higher sending

rate, just like we observed with our movie clip. While CCID 3 achieves 4.56Mbits/sec on

average and CCID 2 achieves 4.03Mbits/sec, UDP achieves 22.39Mbits/sec on average.

Interestingly, in about half of our tests UDP never attempted to adjust the video encoder’s

bitrate, leaving the requested bitrate at 100Mbits/sec and essentially letting the video

encoder achieve the maximum bitrate that the video complexity warranted. Even in those

tests where UDP did adjust the requested bitrate, it rarely made more than ten adjustments

during the whole test.

104

The lack of adjustments in linphone’s requested bitrate when using UDP/RTP

congestion control simply indicates that the loss rate never exceeded 10% and the the

round trip time never doubled between two RTCP reports. This is roughly equivalent to

saying that network conditions never became terrible. It does not indicate good fairness

between the video stream TCP as figure 4.21 shows. Recall that a fairness ratio of 1 is

perfect fairness and that a factor of two difference in throughput is considered to be

acceptable fairness. UDP clearly competes unfairly with TCP the vast majority of the

time, despite linphone’s UDP/RTP congestion control.

A major part of this unfairness is that TCP is distinctly more sensitive to loss than

linphone’s UDP/RTP congestion control. TCP will halve its sending rate in response to a

single loss while UDP/RTP will not react until the loss rate exceeds 10% over a five

second period. This will tend to result in TCP eliminating the congestion before UDP

 1

 2

 0

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

F
a

ir
n

e
s
s
 R

a
ti
o

 (
U

D
P

/T
C

P
)

Time (seconds)

Fairness of UDP to TCP for Videoconference Clip, Short Distance Internet

UDP

Figure 4.21: Average fairness of UDP to TCP while streaming our videoconference clip in

the short distance Internet environment. Error bars indicate the 95% confidence interval.

105

slow downs, effectively ceding bandwidth to UDP. In addition, linphone’s UDP/RTP

congestion control has no dependence on the round trip time, unlike TCP and most other

congestion controlled protocols. The bursty data stream that linphone sends tends to cause

fairly large changes in round trip time, which will effect TCP but not phase linphone’s

UDP/RTP congestion control in the slightest.

In this environment, there is also a difference in received video quality between

CCID 2 and CCID 3 as seen in figure 4.19. As we have noticed before, CCID 3 performs

better than CCID 2 at the low probability end of the CDF, despite virtually identical peak

performance. As discussed previously, this is caused by CCID 2’s harsh response to loss

and slow application level increase afterward. CCID 3 meanwhile, experiences rapid

sending rate oscillations, but achieves a higher average throughput in this environment,

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 50 100 150 200 250 300

T
h

ro
u

g
h

p
u

t
(M

b
it
s
/s

e
c
)

Time (seconds)

Throughput Comparision of Videoconference Clip, Short Distance Internet

DCCP CCID 2
DCCP CCID 3

Figure 4.22: Throughout of representative CCID 2 and CCID 3 flows while streaming our

videoconference clip in the short distance Internet environment.

106

where the round trip time is just a few frames. Figure 4.22 shows the network throughput

achieved by representative CCID 2 and CCID 3 flows and illustrates these issues nicely.

Both DCCP CCIDs achieve much more even video quality than UDP in our short

distance Internet environment although they are unable to match UDP’s overall video

quality because they cannot match its throughput. CCID 3 performs better than CCID 2

by giving the application a better understanding of its allowed sending rate. UDP’s high

throughput comes from being distinctly unfair to competing TCP traffic.

4.3 Bitrate Adjustment Interval Analysis

When we began to run our long distance Internet tests, we observed major issues

with DCCP. In particular, both CCIDs would reject over 70% of the packets linphone

attempted to send while apparently encouraging linphone to send nearly twice as many

packets as when using UDP. A further oddity was that a very large quantity of the frames

sent were I-frames, nearly 50% in some cases.

Figure 4.23 shows linphone’s requested bitrate over a 30 second segment of one of

these DCCP CCID 2 connections. Notice the rapid oscillation between high and low

bitrate. As this is CCID 2, each of the bitrate decreases represents a send queue overflow

and associated packet loss, which explains the 70%+ loss rate. Explaining the bitrate

increases requires understanding in detail how linphone adjusts its requested bitrate.

Linphone keeps a variable containing the bitrate that it requests from the video

encoder and on loss decreases this value by the maximum of 10% or the loss rate (if using

UDP). However, as mentioned before, the encoder views this requested bitrate as a

recommendation and may not follow it if the video stream’s complexity is unsuitable to

compression at the requested bitrate.

When modifying linphone to support DCCP, we found it necessary to include a

sanity check on this requested bitrate. If this requested bitrate is not within a factor of 10

107

 0

 1

 2

 3

 4

 5

08:24:00 08:24:10 08:24:20 08:24:30

R
e

q
u

e
s
te

d
 B

it
ra

te
 (

M
b

it
s
/s

e
c
)

Time (date as hours:minutes:seconds)

Requested Bitrate over DCCP CCID 2

Figure 4.23: Requested bitrate oscillations in a DCCP CCID 2 connection with no bitrate

update interval and high round trip time variation in the long distance Internet environment.

of the video encoder’s recent actual bitrate, reset the requested bitrate to be within a factor

of two of this actual bitrate (either half or twice, as appropriate). Without this sanity

check, we found that linphone using CCID 2 had a tendency to decrease its requested

bitrate to the minimum allowed bitrate, 128kbits/sec, irrespective of what bitrate the video

encoder was actually putting out.

This sanity check causes the behavior observed in figure 4.23. Linphone starts at

some bitrate and suffers a send queue overflow, so the requested bitrate is decreased. This

triggers an I-frame, which is larger than the average frame. Since the send queue just

overflowed from a normal sized frame, this I-frame is almost certain to cause another

queue overflow, which triggers a further bitrate reduction. Eventually, the requested

bitrate is a factor of 10 below the video encoder’s actual achieved bitrate and our

algorithm resets it to half the achieved bitrate. This, of course, results in another I-frame,

108

send queue overflow, and bitrate reduction. Unintended consequences like this are part of

the reason that designing and implementing congestion control is so hard.

The trigger for this behavior is large variation in round trip time. Figure 4.24 shows

the round trip time for this same CCID 2 connection along with the smoothed round trip

time used by both CCIDs. Observe the high variation, even in the smoothed round trip

time. As the round trip time varies, the effective sending rate of CCID 2, one window of

data per round trip time, also varies. This can cause queue overflow without an actual

packet loss and appears to be the initial trigger for the nasty oscillations just discussed.

The reason this behavior did not show up in our other tests is that the round trip time

in previous environments was much shorter. In fact, it was less than or roughly equal to

the time between frames in both of the other environments. As a result, CCID 2 had more

flexibility since the whole window contained only a single frame instead of being shared

 180

 200

 220

 240

 260

 280

 300

8:16:00 8:18:00 8:20:00 8:22:00 8:24:00 8:26:00

R
o

u
n

d
 T

ri
p

 T
im

e
 (

m
ill

is
e

c
o

n
d

s
)

Time (date as hours:minutes:seconds)

Round Trip Time for DCCP CCID 2

Network RTT
Smoothed RTT

Figure 4.24: Round trip time for a DCCP CCID 2 connection in our long distance Internet

environment that exhibits very poor streaming performance.

109

between multiple frames. Further, the allowed sending rate would increase more rapidly

and CCID 2 would be able to adjust to variations in application sending rate much faster.

In our long distance Internet environment, the round trip time is about 8-10 frames in

length so CCID 2 is constrained to react much more slowly. This slower reaction increases

the likelihood that packets will be rejected.

CCID 3 also experiences similar behavior with only minor differences in cause. The

round trip time variations cause many requested bitrate updates. Because of the longer

round trip, CCID 3 is similarly less flexible in how rapidly its sending rate can vary. In

particularly, CCID 3 is constrained to sending at most twice the receiving rate over the last

round trip time. As a result, the emission of I-frames will tend to trigger send queue

overflow and a similar cycle emerges.

Our solution to this problem was to limit the frequency with which linphone would

attempt to update its bitrate based on feedback from DCCP. Since the much larger size of

I-frames, and the send queue overflows that result, are a large part of the problem, simply

ignoring these overflows will break this cycle.

An alternative solution that would be to simply not update the requested bitrate if

doing so would take it outside of a factor of 10 of the recent actual bitrate. This, however,

has the problem that the requested bitrate could slip outside this factor of 10 not by

explicit update but by a change in video complexity. Even ignoring this issue, the

requested bitrate would not be as accurate as in our current scheme, which would reduce

the effectiveness of increases and decreases to this requested bitrate. For these reasons, we

prefer to limit the frequency with which linphone will update this requested bitrate.

The ideal update frequency was not immediately obvious to us so we performed an

examination of various update intervals. The sections below discuss our findings.

110

4.3.1 Long Distance Internet Experiments

Figures 4.25 and 4.26 show cumulative distribution functions of the video quality

achieved by CCID 3 and CCID 2, respectively, with various bitrate update intervals. All of

these CDFs are averaged over three test runs with our 12 minute movie clip. The video

quality metric being used is PSNR. Both of these figures also include UDP’s video quality

CDF for comparison. Note that 40ms is the amount of time between video frames, so the

no limitation on the bitrate update interval is equivalent to 40ms interval. These unlimited

tests are the ones that achieved a greater than 70% packet reject rate and severe requested

bitrate oscillations as mentioned earlier.

Considering CCID 3 and figure 4.25 first, observe that our unlimited 40ms curve

achieves extremely poor quality, with 80% of frames being unwatchably poor. This should

come as no surprise given that linphone suffers greater than 70% packet rejection in this

case. Further, notice that UDP achieves higher video quality than any CCID 3 test about

70% of the time. This occurs because UDP achieves much greater throughput than either

DCCP CCID. We will discuss why this occurs in more detail in section 4.4.1.

Among the CCID 3 curves, there is relatively little variation in quality once an initial

bitrate update interval of roughly the same length as the round trip time has been imposed.

The difference between any two bitrate update intervals between 100ms and 6 seconds is

1dB PSNR at 50% and no more than 5dB PSNR anywhere. The shorter update intervals

achieve slightly better maximum quality while an interval of around one second exhibits

the tightest lower knee, representing a minimum of extremely poor quality frames.

Figure 4.25b shows a close up of the CCID 3 CDFs around the 0.5 probability mark

in order to illustrate the differences there more clearly. At this point, the short update

intervals of 100ms and 200ms transition from being the best option in the upper half to the

worst choice in the lower half. It is interesting to note that the round trip time in this

environment is right about 180ms. The 500ms and 1000ms update intervals move from

111

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 3 PSNR for Various Bitrate Update Intervals

UDP
CCID 3 6000ms
CCID 3 3000ms
CCID 3 1500ms
CCID 3 1000ms

CCID 3 500ms
CCID 3 200ms
CCID 3 100ms

CCID 3 40ms (no limit)

(a) Full CDFs

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 26 27 28 29 30 31 32 33

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 3 PSNR for Various Bitrate Update Intervals

CCID 3 6000ms
CCID 3 3000ms
CCID 3 1500ms
CCID 3 1000ms

CCID 3 500ms
CCID 3 200ms
CCID 3 100ms

(b) Closeup of CDFs around 0.5 probability

Figure 4.25: Average cumulative distribution functions of video quality, as measured by

PSNR, for CCID 3 using various bitrate update intervals and our movie clip in the long

distance Internet environment.

112

middle of the road at the high end to best option at the low end. The long 4000ms and

6000ms bitrate update intervals do uniformly poorly.

We consider the 1000ms update interval to be optimal in this situation because it

minimizes the number of extremely poor quality frames while also achieving mid-pack

performance at the high end. A lower update interval would achieve better high end

performance, but UDP already does much better in that space than any DCCP

configuration so we felt it more important to focus on the lower end where CCID 3 can

compete with UDP.

Turning now to CCID 2, consider figure 4.26. Notice that, compared to CCID 3,

there are larger differences in video quality as the bitrate update interval changes. UDP

still achieves noticeably higher quality, because it allows much greater throughput, and no

limitation on the bitrate update interval still produces incredibly poor quality. Between

these two extremes lie our CCID 2 CDFs, with various bitrate update intervals between

100ms and 6 seconds. The best bitrate update interval improves video quality by up to

10dB PSNR.

Not only does the bitrate update interval make more difference with CCID 2 than

CCID 3, it also makes a more consistent difference. The 3000ms update interval leads the

pack with the others spreading out behind it based on their distance from this optimal

value. This ordering is fairly consistent over the whole probability range; the CDFs do not

cross each other. This makes it easy to pick 3000ms as our optimal bitrate update interval

for CCID 2 in our long distance Internet environment.

While we have been able to identify optimal bitrate update intervals in this particular

environment, our experiments have not revealed a specific model or heuristic for choosing

a bitrate update interval in an arbitrary environment. It seems likely that the optimal

bitrate is at least related to the round trip time and the round trip time variance, but we

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 2 PSNR for Various Bitrate Update Intervals

UDP
CCID 2 6000ms
CCID 2 4000ms
CCID 2 3500ms
CCID 2 3000ms
CCID 2 2500ms
CCID 2 1000ms

CCID 2 500ms
CCID 2 100ms

CCID 2 40ms (no limit)

(a) Full CDFs

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 26 27 28 29 30 31 32 33

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 2 PSNR for Various Bitrate Update Intervals

CCID 2 6000ms
CCID 2 4000ms
CCID 2 3500ms
CCID 2 3000ms
CCID 2 2500ms
CCID 2 1000ms

CCID 2 500ms
CCID 2 100ms

(b) Closeup of CDFs around 0.5 probability

Figure 4.26: Average cumulative distribution functions of video quality, as measured by

PSNR, for CCID 2 using various bitrate update intervals and our movie clip in the long

distance Internet environment.

114

have not found a specific model for how they relate. It is also interesting to note how

different the optimal values are between DCCP CCIDs.

4.3.2 Testbed Experiments

To gain a deeper understanding of the bitrate update interval and examine how much

difference this parameter makes between environments, we also examined the bitrate

update interval in our testbed environment.

Figures 4.27 and 4.28 show cumulative distribution functions of received video

quality over DCCP CCID 3 and CCID 2, respectively, for different bitrate update

intervals. The video quality metric utilized is PSNR, and the UDP video quality CDF is

also included for comparison. Each of these CDFs represents a average over three tests

with our 12 minute movie clip. Note again that 40ms is the time between frames so no

limitation on the bitrate update interval produces a 40ms update interval.

In this environment, DCCP is quite competitive with UDP. Considering CCID 3 and

figure 4.27 first, notice that bitrate update intervals of 40ms and 100ms achieve higher or

virtually identical video quality to UDP. Recall that the round trip time in this environment

with a loaded network is around 50ms. This suggests an optimal update interval of a small

multiple of the round trip time, which is inconsistent with our experience in the long

distance Internet environment. This difference is likely due to increased flexibility in

sending rate at lower round trip times. Recall that CCID 3’s sending rate is limited to

twice the receiving rate in the last round trip time.

Above a bitrate update interval of 100ms, CCID 3’s performance falls behind UDP.

CCID 3 suffers from very poor video quality with the 2000, 3000, 4000, and 6000 ms

update intervals while the 500ms and 1000ms intervals achieve only mediocre quality

compared to UDP. This is because CCID 3’s allowed sending rate can change greatly in

115

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 3 PSNR for Various Bitrate Update Intervals

UDP
CCID 3 6000ms
CCID 3 4000ms
CCID 3 3000ms
CCID 3 2000ms
CCID 3 1000ms

CCID 3 500ms
CCID 3 100ms

CCID 3 40ms (no limit)

(a) Full CDFs

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 20 25 30 35 40

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 3 PSNR for Various Bitrate Update Intervals

UDP
CCID 3 6000ms
CCID 3 4000ms
CCID 3 3000ms
CCID 3 2000ms
CCID 3 1000ms

CCID 3 500ms
CCID 3 100ms

CCID 3 40ms (no limit)

(b) Closeup of CDFs around 0.5 probability

Figure 4.27: Average cumulative distribution functions of video quality, as measured by

PSNR, for CCID 3 using various bitrate update intervals and our movie clip in the testbed

environment.

116

the 10-600 round trips that these intervals represent, but the video encoder will not be

updated to match until the end of the interval.

It seems pretty clear that a 40ms update interval is optimal for CCID 3 in our testbed

environment. Using 100ms is reasonable, although a few dB PSNR worse, but above that

the video quality falls off badly. At 500ms, the average video quality is 11dB PSNR less

than at 40ms, and by 6000ms it is 20dB less.

Turning to CCID 2, figure 4.28 shows a very tight grouping of all cumulative

distribution functions; the total spread is only about 1.5dB PSNR. From the close up, we

can observe that CCID 2 performs better than UDP at all update intervals except 6000ms.

Once again, the 40ms and 100ms update intervals achieve the best video quality. Below a

probability of 0.5, the 500ms and 1000ms intervals are next in line, but above this point,

they trade places with the 2000ms and 3000ms intervals.

With the short round trip time in our testbed environment, CCID 2 increases its

window much faster than in our long distance Internet environment, leading to quicker

recovery after a loss. Similarly, the window can be increased more quickly to

accommodate a sudden increase in frame size. This allows CCID 2 to handle more

variation in bitrate without needing the settle down period that the bitrate update interval

provides. Further, all of the tested intervals are shorter than the 10 second interval (after a

50 second idle period) between application bitrate increases so they have no impact on

application level bitrate increases. This explains why the bitrate update interval makes

virtually no difference for CCID 2 in this environment.

Overall, while the bitrate update interval is crucial for long round trip time

environments, it appears to be less necessary in environments with shorter round trips.

Utilizing a long bitrate update interval anyway can result in distinctly poorer CCID 3

video quality, but has little impact on CCID 2.

117

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 2 PSNR for Various Bitrate Update Intervals

UDP
CCID 2 6000ms
CCID 2 4000ms
CCID 2 3000ms
CCID 2 2000ms
CCID 2 1000ms

CCID 2 500ms
CCID 2 100ms

CCID 2 40ms (no limit)

(a) Full CDFs

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 25 26 27 28 29 30 31 32 33 34

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of DCCP CCID 2 PSNR for Various Bitrate Update Intervals

UDP
CCID 2 6000ms
CCID 2 4000ms
CCID 2 3000ms
CCID 2 2000ms
CCID 2 1000ms

CCID 2 500ms
CCID 2 100ms

CCID 2 40ms (no limit)

(b) Closeup of CDFs around 0.5 probability

Figure 4.28: Average cumulative distribution functions of video quality, as measured by

PSNR, for CCID 2 using various bitrate update intervals and our movie clip in the testbed

environment.

118

4.4 Long Distance Internet Experiments

We now turn to examine the performance of video streams over DCCP and UDP in

our long distance Internet environment. This environment has a round trip time of about

178ms, which is typical for transcontinental connections. In addition, video streams in

this environment face competition from a variety of other traffic flows of different types

and characteristics.

4.4.1 Movie Clip

Recall that our long distance Internet environment consisted of two hosts in our lab

with IPv6 tunnels. One tunnel’s endpoint was in Virginia and the other’s was in

California. Traffic traveled from our lab in Ohio to Virginia over one tunnel, across the

IPv6 Internet to California, and then into the other tunnel and back to our lab. Each test

consisted of a linphone videoconference between these two machines along with Iperf

TCP connections in both directions to measure fairness. Each test ran for 12 minutes,

which is the length of our movie clip. All tests used a bitrate adjustment interval of 1

second for CCID 3 and 3 seconds for CCID 2. We identified these as the optimal bitrate

adjustment intervals in the previous section.

Figures 4.29 and 4.30 show cumulative distribution functions of the received video

quality, measured using PSNR and SSIM respectively, for video streams over UDP,

CCID 2, and CCID 3. Each CDF is the average of ten separate test CDFs, representing

two hours of video. These CDFs plot the probability of a connection achieving at most the

specified video quality. The error bars shown at 0.1 probability intervals indicate the 95%

confidence interval. The most obvious feature of these graphs is that UDP outperforms

both DCCP CCIDs nearly all the time, often by 5-8dB PSNR. DCCP only does better

using CCID 3 and only for the poorest 15-20% of each connection.

119

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of PSNR for the Movie Clip in our Long Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.29: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by PSNR, for our movie clip in the long distance Internet environment.

Error bars indicate the 95% confidence interval.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

P
ro

b
a

b
ili

ty

SSIM

CDFs of SSIM for the Movie Clip in our Long Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.30: Average cumulative distribution functions of UDP, CCID 2, and CCID 3 video

quality, as measured by SSIM, for our movie clip in the long distance Internet environment.

Error bars indicate the 95% confidence interval.

120

(a) 15dB PSNR, 0.64 SSIM

(b) 25dB PSNR, 0.88 SSIM

(c) 35dB PSNR, 0.96 SSIM

Figure 4.31: Example video frames with various PSNR and SSIM values. These frames

are taken from our CCID 3 movie clip tests in our long distance Internet environment.

121

To demonstrate how PSNR and SSIM values align with perceived quality, figure 4.31

shows several video frames from these tests with their PSNR and SSIM values.23 You will

notice that the 15 and 25 dB PSNR frames exhibit significant corruption while the 35 dB

frame exhibits no noticeable issues.

To understand why DCCP achieves lower video quality than UDP, it is helpful to

examine linphone’s requested bitrate. This requested bitrate is the bitrate that linphone

requests from the video encoder based on the feedback it receives from DCCP or

UDP/RTP. It is important to note that the video codec may deviate from this bitrate and

may even ignore it completely if it is unachievable given the complexity of the current

video material. In other words, this bitrate indicates the throughput that the congestion

control algorithm would allow the video encoder to achieve.

Figure 4.32 shows average cumulative distribution functions for the requested bitrate

when using UDP, CCID 2, or CCID 3 in our experiments. The error bars at 0.1 probability

intervals indicate the 95% confidence interval. It is immediately obvious that UDP allows

a vastly higher sending bitrate than either DCCP CCID. Both DCCP CCIDs constrain

their sending rate to between 1 and 2Mbits/sec while UDP is actually constrained by its

maximum allowed sending rate, 100Mbits/sec, 10% of the time. Note that linphone never

actually sends that fast, the video complexity never merits that much bandwidth; however,

the UDP/RTP congestion control claims that linphone could send that fast.

The reason for the dramatic difference in requested bitrate between DCCP and UDP

is that the UDP/RTP congestion control algorithm is based purely on loss rate and extreme

changes in round trip time. As long as the round trip time does not double and the loss rate

is under 10%, linphone’s UDP/RTP congestion control algorithm will continue to increase

its sending rate. What we observe in this situation is that sending our video stream at

23 An example of the video received over CCID 2 can also be viewed at http://youtu.be/aQaiK71 2Ns.

http://youtu.be/aQaiK71_2Ns

122

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80 90

P
ro

b
a

b
ili

ty

Requested Bitrate (Mbits/sec)

CDFs of Requested Bitrate for Movie Clip in Long Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.32: Average cumulative distribution functions of the video bitrate requested by

linphone when using UDP, CCID 2, or CCID 3 while running tests with our movie clip in

the long distance Internet environment. Error bars indicate the 95% confidence interval.

maximum bitrate only rarely generates enough traffic to cause a 10% loss rate; when it

does, UDP/RTP slows down. Otherwise, the requested bitrate continues to increase.

Both DCCP CCIDs, on the other hand, are designed to adjust their throughput to be

roughly TCP friendly [FK06, FKP06] and TCP’s throughput depends on both the loss rate

and the round trip time. Mathis proposed what has become a standard model for TCP’s

throughput in [MSMO97]. This model predicts TCP’s throughput from network

parameters like loss rate and round trip time, given that TCP maintains steady state

operation in congestion avoidance. The model is as follows [MSMO97]:

BW =
MS S
RTT

C
√

p

123

where BW is bandwidth, MS S is the maximum segment size, typically the MTU of the

link, RTT is round trip time, C is a constant equal to
√

3/2, and p is the loss rate. From

this model, it is readily apparent that bandwidth varies inversely with round trip time.

Since CCID 2 uses a congestion control algorithm that is nearly identical to TCP’s,

the Mathis model should still also be applicable. In fact, Mathis’s model actually ignores

completely the major point in which the algorithm’s differ: fast recovery [MSMO97]. At

the very least, CCID 2 should achieve no more than a factor of two more than the model

would predict; otherwise, it would no longer be reasonably fair to TCP. Using the

information from table 4.5 for CCID 2, we determine the predicted throughput from

Mathis’s model as follows:

BW =
1480

0.19485

√
3/2

√
0.0004

BW = 465132.8bytes/sec

BW = 3721062.2bits/sec

BW = 3.5Mbits/sec

This is fairly close to the 2.04Mbits/sec that CCID 2 actually achieves. The difference

likely occurs because linphone does not have an unlimited, instantly available supply of

data for CCID 2. It supplies data in chunks at regular intervals. Nevertheless, this analysis

Table 4.5: Network Parameters for Long Distance Internet Environment

MTU RTT Network Loss Rate Average Throughput

UDP 1480 bytes 207.35ms 1.51% 16.65Mbits/sec

CCID 2 1480 bytes 194.85ms 0.04% 2.04Mbits/sec

CCID 3 1480 bytes 194.57ms 0.08% 2.57Mbits/sec

124

does explain why CCID 2 requests such a low bitrate relative to UDP/RTP; it’s congestion

control algorithm is incapable of higher throughput given the network conditions.

We can perform a similar analysis of the throughput predicted by Mathis’s model

under the network conditions that CCID 3 experiences. Using the information from

table 4.5 for CCID 3, the predicted throughput from Mathis’s model is determined as

follows:

BW =
1480

0.19457

√
3/2

√
0.0008

BW = 329371.8bytes/sec

BW = 2634974.8bits/sec

BW = 2.51Mbits/sec

This is nearly identical to the 2.57Mbits/sec that CCID 3 actually achieves. Note that

CCID 3 uses the TFRC algorithm, which is very different from TCP’s congestion control.

However, TFRC is designed to achieve similar throughput to TCP given the same network

conditions. Hence, this analysis actually speaks well to TFRC’s friendliness to TCP. It

also reveals that CCID 3 is prevented from achieving higher bandwidth by its congestion

control algorithm because higher bandwidth would be unfriendly to competing TCP

connections.

Given this analysis, it would be more accurate to say that UDP requests an extremely

high bitrate than to say that DCCP requests a low bitrate. One of the crucial components

of any congestion control scheme is fairness with other traffic, and linphone’s UDP/RTP

congestion control appears to be distinctly unfair to TCP flows, which make up the

majority of traffic on the Internet. Linphone achieves an average of 16.65Mbits/sec with

its UDP/RTP congestion control whereas Mathis’s model predicts that a TCP connection

125

under similar network conditions would achieve:

BW =
1480

0.20735

√
3/2

√
0.0151

BW = 71140.2bytes/sec

BW = 569121.3bits/sec

BW = 0.54Mbits/sec

This is barely 1/36th of the throughput linphone achieves.

Figure 4.33 shows the average fairness of UDP, CCID 2, and CCID 3 to TCP in our

tests. The error bars at 50 second intervals indicate the 95% confidence interval. Our

fairness metric is the ratio of protocol throughput/tcp throughput and is graphed on a

log scale. Observe that UDP achieves throughput more than five times that of TCP for

 0.5

 2

 0.01

 0.1

 1

 10

 100

 1000

 0 100 200 300 400 500 600 700

F
a

ir
n

e
s
s
 R

a
ti
o

 (
P

ro
to

c
o

l/
T

C
P

)

Time (seconds)

Fairness Comparision of Movie Clip in Long Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.33: Average fairness of UDP, CCID 2, and CCID 3 to TCP over our 12

minute movie clip in the long distance Internet environment. Error bars indicate the 95%

confidence interval.

126

significant periods and bursts to well over 100 times TCP’s throughput. By comparison,

both DCCP CCIDs maintain much more even fairness, hovering at around a ratio of 0.3.

The burstiness of video data has a lot to do with why both DCCP CCIDs achieve

overly conservative fairness ratios. Recall that I-frames are much larger than P-frames,

often by a factor of four or so, and that even within these classes there is significant size

variation based on image complexity. This effectively results in sudden, and possibly

major, bitrate changes every 40ms. Neither DCCP CCID is ever able to more than double

its sending rate in a round trip time, in this environment about five frames, and increase

much more slowly, roughly one packet per round trip, if fully utilizing their allowed

bandwidth. This mismatch forces linphone to send so that the peak bitrate of the bursts

match DCCP’s allowed sending rate. This, of course, results in underutilization of

DCCP’s bandwidth at non-peaks and a corresponding conservative fairness ratio.

It is interesting to recall that our examination of fairness in the testbed environment

found that UDP/RTP was distinctly less aggressive than it could have been, except at the

very beginning of the connection. In our long distance Internet environment, the result is

almost exactly the opposite; UDP/RTP is always too aggressive. This difference really has

more to do with TCP than with UDP/RTP’s congestion control algorithm. TCP’s

throughput is dependent on both round trip time and loss rate; as the round trip time

increases, TCP’s throughput decreases, given the same loss rate. The UDP/RTP algorithm,

by contrast, is independent of round trip time and only dependent on loss rate. As a result,

fairness varies between UDP/RTP and TCP as the round trip time changes. This is rather

unfortunate as fairness with TCP is critically important in the Internet.

Both DCCP CCIDs were designed to compete fairly with TCP. This they do

reasonably well. However, they achieve fair competition by making their achieved

bandwidth dependent on the network round trip time in addition to the loss rate, in much

the same manner as TCP. This severely limits the bandwidth they can achieve in

127

environments with long round trip times. As a result, they compete poorly in terms of

video quality with UDP in such environments.

4.4.2 Videoconference Clip

We now consider our videoconference clip in the long distance Internet environment.

The same two machine setup with IPv6 tunnels to Virginia and California was utilized.

Each test consisted of a linphone videoconference and Iperf connections between these

two boxes such that traffic passed from our lab in Ohio, to Virginia, to California, and then

back to our lab. Each test was five minutes long, which is the length of our

videoconference clip. All tests used a bitrate adjustment interval of 1 second for CCID 3

and 3 seconds for CCID 2. These are the optimal bitrate adjustment intervals identified in

our bitrate adjustment interval analysis.

Figures 4.34 and 4.35 show cumulative distribution functions of the received video

quality, measured using PSNR and SSIM respectively, for UDP, CCID 2, and CCID 3.

Each cumulative distribution function is the average of ten separate test CDFs. The error

bars shown at 0.1 probability intervals indicate the 95% confidence interval.

The sharp discontinuity in the UDP PSNR cumulative distribution function along

with the large increase in confidence interval size just below a probability of 0.55 is

interesting. Even more interesting is how much less pronounced this discontinuity is in the

UDP SSIM CDF. Recall that SSIM is designed to measure the structural content of the

image instead of just total pixel differences. Hence, the likely explanation for these

disparate measurements is that video streaming over UDP in this environment results in a

large number of distortions that have little effect on the structural information of the scene

but generate significant pixel differences.

128

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40

P
ro

b
a

b
ili

ty

PSNR (dB)

CDFs of PSNR for Videoconference Clip in Long Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.34: Average cumulative distribution functions for UDP, CCID 2, and CCID 3

received video quality, as measured by PSNR, for our videoconference clip in the long

distance Internet environment. Error bars indicate the 95% confidence interval.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

P
ro

b
a

b
ili

ty

SSIM

CDFs of SSIM for Videoconference Clip in Long Distance Internet Setup

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.35: Average cumulative distribution functions for UDP, CCID 2, and CCID 3

received video quality, as measured by SSIM, for our videoconference clip in the long

distance Internet environment. Error bars indicate the 95% confidence interval.

129

(a) 15dB PSNR, 0.64 SSIM

(b) 25dB PSNR, 0.96 SSIM

(c) 35dB PSNR, 0.95 SSIM

Figure 4.36: Example video frames with various PSNR and SSIM values. These frames

are taken from our CCID 3 videoconference clip tests in our long distance Internet

environment.

130

Figure 4.36 shows several video frames from these tests with their PSNR and SSIM

values. Notice that the 25 and 35 dB PSNR frames have no noticeable artifacts and

actually have nearly identical SSIM values.

Visual examination of the video received over UDP reveals numerous instances of

visual artifacts like those in figure 4.37. These artifacts appear suddenly and usually last

several seconds. They affect both stationary and moving objects and always consist of

gray colored blocks. This implies that they result from the loss of texture data in I-frames.

That would also explain the long persistence of these artifacts since they would only

disappear at the next I-frame. UDP packet loss in this environment is low, only 0.13%, but

only a few losses are needed to cause these artifacts since the lost data will continue to be

visible over numerous P-frames. This loss rate corresponds to about two packets every

second, which is more than sufficient to cause frequent artifacts of this type given that the

default I-frame refresh rate is once every 10 seconds.

The SSIM cumulative distribution function, figure 4.35, indicates that this type of

distortion has fairly minimal impact on image perception. We find this to the case

(a) Original (b) Corrupted

Figure 4.37: Example of the visual artifacts resulting from UDP packet loss in our

videoconference clip in the long distance Internet environment.

131

subjectively as well. It is easy to understand what is happening in the received video

despite such distortions.

Returning to the video quality CDFs in figures 4.34 and 4.35, it is apparent that

CCID 3 results in much better video quality than CCID 2. As previously discussed, this

occurs because CCID 3 responds less aggressively to lost packets than CCID 2 and

because CCID 3 makes its sending rate available to the application via a socket option.

This allows the application to adjust its sending rate without having to wait for a send

queue overflow, like with CCID 2. As a result, CCID 3 not only sends more packets in

total than CCID 2 but also has fewer packets rejected, as table 4.6 shows. The CCID 3

quality CDFs exhibit a much smaller confidence interval than the CCID 2 CDFs,

indicating more even video quality, for the same reason.

In our long distance Internet environment, CCID 2 actually achieves lower video

quality than in previous environments. The longer round trip time causes CCID 2 to

increase its allowed sending rate more slowly than in our other environments. Further, a

single congestion window now has to hold several frames, instead of only one, which

decreases CCID 2’s flexibility. CCID 3 also becomes less responsive in the face of

increasing round trip time, but its less aggressive rate-based congestion control and socket

option application feedback help to mitigate the effects.

Table 4.6: Packet Statistics for our Videoconference Clip in the Long Distance Internet

Environment

Sent Packets Received % Received Lost % Lost Rejected % Rejected

UDP 752362 751417 99.87% 945 0.13% 0 0%

CCID 2 7768420 38676 56.53% 93 0.14% 29650 43.34%

CCID 3 93973 81324 86.54% 71 0.08% 12577 13.38%

132

Linphone achieves significantly higher throughput when streaming our

videoconference clip over UDP instead of either DCCP CCID. Recall that we observed

this same behavior with our movie clip in the previous section. Table 4.6 shows that UDP

sends nearly eight times as many packets as CCID 3 and eleven times as many as CCID 2.

This allows UDP to obtain significantly higher video quality. However, this higher

throughput is significantly unfair to TCP and other background traffic, as discussed

previously.

Interestingly, both DCCP CCIDs result in more even video quality compared to UDP

when streaming our video conference clip. The PSNR versus time graph for a

representative test in figure 4.38 clearly illustrates this. DCCP may not achieve the

absolute video quality that UDP does, but it certainly achieves a more even video quality,

especially when using CCID 3. The dramatic variation in UDP’s video quality occurs

 5

 10

 15

 20

 25

 30

 35

 40

 0 1000 2000 3000 4000 5000 6000 7000

P
S

N
R

 (
d

B
)

Time (Frames)

PSNR versus Time of Videoconference Clip

UDP
DCCP CCID 2
DCCP CCID 3

Figure 4.38: PSNR versus time for representative experiments with our videoconference

clip over UDP, CCID 2, and CCID 3 in the long distance Internet environment.

133

because of the previously discussed visual artifacts resulting from random packet losses in

I-frame texture data. Both DCCP CCIDs react much more harshly to network packet loss

than UDP does. As a result, the frequency of these artifacts is much lower when using

DCCP.

DCCP does suffer from significant packet rejection because of send queue overflow.

However, this tends to occur in large bursts, reducing the number of frames affected.

Many of these events result in undecodable frames which have a smaller impact on video

quality than long duration visual artifacts. Further, when packets are lost or rejected in

DCCP, it causes a bitrate reduction which forces a new I-frame that will refresh the video

and reduce the persistence of these artifacts.

This examination of the performance of videoconference type streaming over UDP

and DCCP in a long distance Internet environment uncovered an unusual difference

between the cumulative distribution functions for PSNR and SSIM in our UDP streaming

tests. This difference was found to be the be result of a visual artifact caused by the loss of

texture data in I-frames as a result of random network packet loss. These visual artifacts

are not apparent using either DCCP CCID because the DCCP congestion control

algorithms are more sensitive to packet losses and thus slow down to a rate where these

artifacts are rare. Just as with our movie clip, UDP achieves higher throughput than either

DCCP CCID, allowing better video quality, but at the expense of fairness to competing

traffic.

134

5 Conclusions and FutureWork

5.1 Conclusions

This thesis examines the performance of real-time video streaming over DCCP as

compared to streaming over UDP with RTP congestion control. We examine the

performance in a testbed environment as well as Internet environments with long and

short round trip times in order to consider data from a diverse set of environments. To

account for different types and complexities of video, two different video clips were used.

One being representative of typical videoconferencing content while the other was a

movie clip. These experiments provide a solid basis for making conclusions about

DCCP’s effectiveness for video streaming.

This work improves upon the literature by comparing the performance of DCCP to

an application level congestion control scheme used in a real streaming media application.

Further, this comparison is done using real applications in a variety of real network

environments, instead of using simulations that may not accurately reflect all the

complexities of real applications in real environments. In addition, we consider both

media quality and network traffic characteristics in our analysis and conclusions.

Surprisingly, these two disciplines seem to rarely communicate, even about joint problems

like congestion control for streaming media.

This work has also resulted in a much improved implementation of DCCP in the

Linux kernel, through the contribution of nine patches fixing a variety of bugs and

performance issues. Further, we have contributed our implementation of DCCP support

for linphone back to the open source community, and it has been accepted for merging

into the mainline. It will probably be available in linphone 3.7. This makes linphone one

of the few applications that support DCCP and one of even fewer that support it without a

3rd-party, semi-maintained patch.

135

Our results show that both DCCP CCIDs provide much more even video quality, as

measured by both PSNR and SSIM, than UDP/RTP does. This is a significant benefit for

DCCP, as quality evenness may be more important than total quality, particularly once

some minimum quality is reached.

Further, in those cases where UDP and DCCP are achieving roughly their fair share

of network bandwidth, DCCP achieves similar or better video quality, as measured by

PSNR and SSIM, compared to UDP. This showcases DCCP’s value for real-time,

streaming video; DCCP responds to network conditions faster than UDP/RTP would,

allowing it to achieve better video quality.

However, UDP/RTP congestion control, as implemented in Linphone and probably

other applications, often utilizes much more than its fair share of network bandwidth. This

can be by as much as a factor of 5 or 10. This allows UDP/RTP to achieve better video

quality, but at the cost of friendliness to other applications on the Internet.

A significant part of this problem is that this form of UDP/RTP congestion control is

independent of round trip time, while most other congestion control mechanisms utilize

the round trip time as a crucial part of their algorithm. As a result, while this UDP/RTP

algorithm may be fair to TCP traffic in one environment, it will almost certainly be unfair

in other environments.

This is not the only unfairness issue that UDP/RTP suffers. This congestion control

algorithm also experiences a significant throughput spike at the beginning of the

connection while the correct sending rate is being sought. This burst may last up to a

minute and result in unfairness on the order of 100:1. We have even observed zero

throughput for multiple seconds on competing TCP connections during this period.

By contrast, both DCCP CCIDs are designed to be fair to other traffic on the network

and to require no intervention from the application programmer to achieve this. They

accomplish that goal reasonably well, although both tend to be overly conservative when

136

competing with TCP traffic. This conservative behavior results from the burstiness of

video traffic; given an even application sending rate, the literature shows that both CCIDs

compete quite well with TCP.

Another important conclusion from this study is that using send queue backpressure

as feedback to the application is problematic. It results in a significant number of rejected

packets since that is the only way to signal the application to slow down. In addition, this

approach delays application reaction until it is too late to avoid rejecting more packets

from the frame currently being encoded and requires slowing down more than strictly

necessary in order to drain the send queue.

Further, while backpressure allows the application to determine when it needs to slow

down, this method of feedback provides no signal to the application when it could speed

up. As a result, it becomes necessary to implement some sort of gradual increase

mechanism. This is exactly the kind of application infrastructure that DCCP was designed

to eliminate and encourages the application to be overly conservative because of the harsh

penalty for being aggressive.

A much better alternative is making the currently allowed sending rate, or some

smoothed version of it, available to the application via a socket option, as done by

CCID 3. While this approach is not perfect, being particularly vulnerable to rapid rate

oscillations, it is much simpler, more accurate, and generally achieves better performance

than backpressure feedback.

In addition, really taking advantage of DCCP and its more frequent and more

granular bitrate updates requires a video encoder that allows the requested bitrate to be

varied on the fly, without re-initializing the encoder and forcing a new, very large, I-frame.

If updating the bitrate requires sending a new I-frame, then there is a trade off between

setting a more accurate bitrate and dealing with the burst of data that the resulting I-frame

137

will cause. This trade off becomes particularly important in long round trip time

environments where DCCP adjusts its sending rate relatively slowly.

Finally, DCCP provides significant benefits to application developers by freeing them

from having to design, implement, test, and maintain a complex congestion control

algorithm. DCCP provides effective, well tested congestion control essentially for free; all

application developers have to do is utilize the feedback it provides to adjust the sending

rate of their application. We have shown that this is fairly easy to do for video streaming

and results in reasonable quality and improved fairness to other applications. These

benefits may also make DCCP attractive to other applications with real-time constraints

and a need for congestion control. Augmented reality systems and online gaming are two

prime examples.

DCCP was designed to offer congestion control to real-time applications. It provides

several benefits for real-time, video streaming applications, including more even video

quality. Although existing UDP/RTP congestion control mechanisms can achieve better

quality, they do so by being significantly unfair to other network traffic. In addition, such

mechanisms require significant programmer time to design and implement. With a few

improvements and a streaming-optimized video encoder, DCCP would be extremely

effective for real-time, streaming video applications.

5.2 Future Work

There remains plenty of future research that could be done with DCCP in streaming

media applications. Probably one of the most promising would be the design of a new

CCID more optimized to the needs of video streaming. A rate-based design similar to

CCID 3 would probably be the appropriate place to start because of the milder response to

congestion and inherent rate-based nature of video traffic. One of the most important

things for such a video-optimized CCID to have is an understanding of what we refer to as

138

chunked transfer, the idea that an application will try to send a group of packets now and

then not send anything for the next x milliseconds. A CCID that understands chunked

transfer could maintain a more even sending rate and do intelligent queuing to avoid

rejecting packets that could actually be sent.

One of the major problems with using CCID 3 at the moment is that it cannot

increase its sending rate fast enough to handle MPEG-4’s burstiness. The TFRC

specification actually constrains CCID 3 to twice its sending rate in the last round trip

time. This requirement cannot be completely removed because sudden bursts, even for

short periods, can cause router queue overflows and network loss, which will be

interpreted by other congestion controlled protocols as a sign that they need to slow down.

However, it may be possible to allow a CCID to linearly increase its sending rate over the

course of either a round trip or an application data chunk, as long as the CCID’s rate is

below the TCP-friendly computed rate. This would allow greater flexibility to handle

bursty data streams while smoothing those bursts out on the network. It would also reduce

the round trip time dependence of CCID 3, which would improve performance in long

round trip environments.

Another important feature of such a video-optimized CCID would be some form of

time and priority based send queue that would throw away older data on queue overflow.

The ability to give preferential treatment to I-frames would also be beneficial.

Another area for future work would be the design and implementation of a socket

option to allow an application to query DCCP CCID 2’s allowed sending rate. This

sending rate could be trivially computed as window size∗avg pkt size
RTT ; however, some form of

smoothing would almost certainly be needed and there may be a smarter computation.

CCID 3 would also likely benefit from similar smoothing for the sending rate it makes

available via socket option.

139

In addition, the determination of a model or heuristic for setting the bitrate

adjustment interval would also be a beneficial area for future work. Our initial exploration

of this space in section 4.3 suggests a dependence on round trip time and shows that the

two DCCP CCIDs require different values. This sufficed for determining optimal values

for use in our tests; however, we were not able to generalize this to a global model.

A final area for future work would be a detailed analysis of video traffic burstiness.

Although burstiness is a well known phenomenon in network traffic, good metrics for

burstiness remain illusive. Further, examination of video burstiness is nearly nonexistent

in the literature.

140

References

[Ado13] Adobe Systems Incorporated. Video Learning Guide for Flash: NTSC and
PAL video standards — Adobe Developer Connection, 2013. URL:
https://www.adobe.com/devnet/flash/learning guide/video/part06.html

[Adv95] Advanced Television Systems Committee Inc. Standard for Coding 25/50
Hz Video. Technical report, Advanced Television Systems Committee Inc,
1995.

[Adv07] Advanced Television Systems Committee Inc. A / 53: ATSC Digital
Television Standard , Parts 1 - 6. Technical report, Advanced Television
Systems Committee Inc, 2007.

[AML03] Toufik Ahmed, Ahmed Mehaoua, and Vincent Lecuire. Streaming
MPEG-4 Audio Visual Objects Using TCP-Friendly Rate Control and
Unequal Error Protection. In Multimedia and Expo, 2003. ICME ’03.
Proceedings. 2003 International Conference on, pages 1–5. IEEE, 2003.

[AMM09] Muhmmad Azad, Rashid Mahmood, and Tahir Mehmood. A Comparative
Analysis of DCCP Variants (CCID2, CCID3), TCP and UDP for MPEG4
Video Applications. In Information and Communication Technologies,
2009. ICICT ’09. International Conference on, pages 40–45. IEEE, 2009.
doi:10.1109/ICICT.2009.5267215

[APB09] Mark Allman, Vern Paxson, and Ethan Blanton. TCP Congestion Control.
RFC 5681 (Draft Standard), September 2009.

[BA05] Ali C Begen and Yucel Altunbasak. Estimating Packet Arrival Times in
Bursty Video Applications. In Multimedia and Expo, 2005. ICME 2005.
IEEE International Conference on, pages 767 – 770. IEEE, 2005.
doi:10.1109/ICME.2005.1521536

[BAFW03] Ethan Blanton, Mark Allman, Kevin Fall, and Lili Wang. A Conservative
Selective Acknowledgment (SACK)-based Loss Recovery Algorithm for
TCP. RFC 3517 (Proposed Standard), April 2003.

[BBM08] Saleem Bhatti, Martin Bateman, and Dimitris Miras. A Comparative
Performance Evaluation of DCCP. In Performance Evaluation of
Computer and Telecommunication Systems, 2008. SPECTS 2008.
International Symposium on, pages 433–440, 2008.

[BDS96] Ingo Busse, Bernd Deffner, and Henning Schulzrinne. Dynamic QoS
Control of Multimedia Applications based on RTP. Computer
Communications, 19(1):49–58, 1996. doi:10.1016/0140-3664(95)01038-6

https://www.adobe.com/devnet/flash/learning_guide/video/part06.html
http://dx.doi.org/10.1109/ICICT.2009.5267215
http://dx.doi.org/10.1109/ICME.2005.1521536
http://dx.doi.org/10.1016/0140-3664(95)01038-6

141

[Bel13] Belledonne Communications. Belledonne communications: Linphone, SIP
video phone client - Voice and Video over IP experts, 2013. URL:
http://www.belledonne-communications.com/linphone.html

[Bra89] Robert Braden. Requirements for Internet Hosts - Communication Layers.
RFC 1122 (Standard), October 1989.

[CCZ03] Jae Chung, Mark Claypool, and Yali Zhu. Measurement of the Congestion
Responsiveness of RealPlayer Streaming Video Over UDP. In Proceedings
of the Packet Video Workshop. Citeseer, 2003.

[CGL+01] Gregory Conklin, Gary Greenbaum, Karl Lillevold, Alan Lippman, and
Yuriy Reznik. Video Coding for Streaming Media Delivery on the Internet.
Circuits and Systems for Video Technology, IEEE Transactions on,
11(3):269–281, 2001.

[Cis13] Cisco Systems. Quality of Service Design for TelePresence, 2013. URL:
http://www.cisco.com/en/US/docs/solutions/Enterprise/Video/tpqos.html

[CMP08] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Skype Video
Responsiveness to Bandwidth Variations. In Proceedings of the 18th
International Workshop on Network and Operating Systems Support for
Digital Audio and Video, pages 81–86. ACM, 2008.
doi:10.1145/1496046.1496065

[CMY09] Hafiz Muhammad Omer Chughtai, Shahzad A Malik, and Muhammad
Yousaf. Performance Evaluation of Transport Layer Protocols for Video
Traffic over WiMax. In Multitopic Conference, 2009. INMIC 2009. IEEE
13th International, pages 1–6. IEEE, 2009.
doi:10.1109/INMIC.2009.5383117

[Con12] Conservatorio di musica G. Tartini. LOLA: Low Latency Audio Visual
Streaming System Installation & User’s Manual. Technical report,
Conservatorio di musica G. Tartini, Trieste, Italy, 2012.

[CPM07] Nicola Cranley, Philip Perry, and Liam Murphy. Dynamic Content-Based
Adaptation of Streamed Multimedia. Journal of Network and Computer
Applications, 30(3):983–1006, August 2007.
doi:10.1016/j.jnca.2005.12.006

[CZM+10] An Chan, Kai Zeng, Prasant Mohapatra, Sung-ju Lee, and Sujata Banerjee.
Metrics for Evaluating Video Streaming Quality in Lossy IEEE 802 . 11
Wireless Networks. In INFOCOM, 2010 Proceedings IEEE, pages 1–9.
IEEE, 2010. doi:10.1109/INFCOM.2010.5461979

http://www.belledonne-communications.com/linphone.html
http://www.cisco.com/en/US/docs/solutions/Enterprise/Video/tpqos.html
http://dx.doi.org/10.1145/1496046.1496065
http://dx.doi.org/10.1109/INMIC.2009.5383117
http://dx.doi.org/10.1016/j.jnca.2005.12.006
http://dx.doi.org/10.1109/INFCOM.2010.5461979

142

[Dig12] Digital Video Broadcasting. Digital Video Broadcasting(DVB):
Specification for the use of Video and Audio Coding in Broadcasting
Applications based on the MPEG-2 Transport Stream. Technical report,
Digital Video Broadcasting, 2012.

[DR06] B D’Auria and SI Resnick. Data Network Models of Burstiness. Advances
in Applied Probability, 38(2):373–404, 2006.

[dSOPdM08] Leandro Melo de Sales, Hyggo Oliveira, Angelo Perkusich, and
Arnaldo Carvalho de Melo. Measuring DCCP for Linux against TCP and
UDP With Wireless Mobile Devices. In Ottawa Linux Symposium, pages
163–177, Ottawa, Ontario, 2008.

[FB02] Nick Feamster and Hari Balakrishnan. Packet Loss Recovery for Streaming
Video. In 12th International Packet Video Workshop, pages 9–16, 2002.

[FdFPM10] Carlos A. Froldi, Nelson L. S. da Fonseca, Carlos Papotti, and Daniel A. G.
Manzato. Performance Evaluation of the DCCP Protocol in High-Speed
Networks. In Computer Aided Modeling, Analysis and Design of
Communication Links and Networks (CAMAD), 2010 15th IEEE
International Workshop on, pages 41–46. IEEE, December 2010.
doi:10.1109/CAMAD.2010.5686967

[FF99] Sally Floyd and Kevin Fall. Promoting the Use of End-to-End Congestion
Control in the Internet. IEEE/ACM Transactions on Networking,
7(4):458–472, 1999. doi:10.1109/90.793002

[FHK06a] Sally Floyd, Mark Handley, and Eddie Kohler. Datagram Congestion
Control Protocol (DCCP). RFC 4340 (Proposed Standard), 2006.

[FHK06b] Sally Floyd, Mark Handley, and Eddie Kohler. Problem Statement for the
Datagram Congestion Control Protocol (DCCP). RFC 4336
(Informational), 2006.

[FHPW08] Sally Floyd, Mark Handley, Jitendra Padhye, and Joerg Widmer. TCP
Friendly Rate Control (TFRC): Protocol Specification. RFC 5348
(Proposed Standard), September 2008.

[FK06] Sally Floyd and Eddie Kohler. Profile for Datagram Congestion Control
Protocol (DCCP) Congestion Control ID 2: TCP-like Congestion Control.
RFC 4341 (Proposed Standard), 2006.

[FK09] Sally Floyd and Eddie Kohler. Profile for Datagram Congestion Control
Protocol (DCCP) Congestion ID 4: TCP-Friendly Rate Control for Small
Packets (TFRC-SP). RFC 5622 (Experimental), 2009.

http://dx.doi.org/10.1109/CAMAD.2010.5686967
http://dx.doi.org/10.1109/90.793002

143

[FKP06] Sally Floyd, Eddie Kohler, and Jitendra Padhye. Profile for Datagram
Congestion Control Protocol (DCCP) Congestion Control ID 3:
TCP-Friendly Rate Control (TFRC). RFC 4342 (Proposed Standard), 2006.

[Flo00] Sally Floyd. Congestion Control Principles. RFC 2914 (Best Current
Practice), September 2000.

[FMMP00] Sally Floyd, Jamshid Mahdavi, Matt Mathis, and Matthew Podolsky. An
Extension to the Selective Acknowledgement (SACK) Option for TCP.
RFC 2883 (Proposed Standard), July 2000.

[GDK+05] Xiaoyuan Gu, Matthias Dick, Zefir Kurtisi, Ulf Noyer, and Lars Wolf.
Network-centric Music Performance: Practice and Experiments.
Communications Magazine, IEEE, 43(6):86–93, 2005.
doi:10.1109/MCOM.2005.1452835

[GDW06] Xiaoyuan Gu, Pengfei Di, and Lars Wolf. Performance Evaluation of
DCCP: A Focus on Smoothness and TCP-friendliness. Annals of
Telecommunications, 61(1):46–71, February 2006.
doi:10.1007/BF03219968

[GMM04] Stefan A Goor, Seán Murphy, and Liam Murphy. Experimental
Performance Analysis of RTP-Based Transmission Techniques for
MPEG-4. In 14th International Packet Video Workshop, 2004.

[Goo05] Stefan A Goor. Experimental Performance Analysis of RTP-Based
Approaches for Low-bitrate Transmission of MPEG-4 Video Content.
Masters thesis, University College Dublin, 2005.

[Hag03] Joacim Haggmark. [dccp] FreeBSD implementation. Email to IETF DCCP
mailing list, October 2003. URL:
https://www.ietf.org/mail-archive/web/dccp/current/msg00508.html

[HAOS01] Duke Hong, Celio Albuquerque, Carlos Oliveira, and Tatsuya Suda.
Evaluating the Impact of Emerging Streaming Media Applications on
TCP/IP Performance. Communications Magazine, IEEE, 39(4):76–82,
2001. doi:10.1109/35.917507

[Hub12] Ian Hubert. Tears of Steel, 2012.

[Hur13] Hurricane Electric Internet Services. Hurricane Electric Free IPv6 Tunnel
Broker, 2013. URL: http://tunnelbroker.net/

[Int99] International Telecommunication Union. ITU-T P.910. Technical report,
International Telecommunication Union, 1999.

http://dx.doi.org/10.1109/MCOM.2005.1452835
http://dx.doi.org/10.1007/BF03219968
https://www.ietf.org/mail-archive/web/dccp/current/msg00508.html
http://dx.doi.org/10.1109/35.917507
http://tunnelbroker.net/

144

[Int01] International Committee for Information Technology Standards. ISO / IEC
14496-1. Technical report, International Standarization Organization, 2001.

[Int02a] International Committee for Information Technology Standards. ISO / IEC
14496-2. Technical report, International Standarization Organization, 2002.

[Int02b] International Committee for Information Technology Standards. ISO/IEC
14496-8. Technical report, International Standarization Organization, 2002.

[Int02c] International Organization for Standardization. ISO/IEC N4668. Technical
report, International Standarization Organization, 2002.

[Int08] International Telecommunication Union. ITU-T J.247. Technical report,
International Telecommunication Union, 2008.

[Jac88] Van Jacobson. Congestion Avoidance and Control. ACM SIGCOMM
Computer Communication Review, 18(4):314–329, 1988.
doi:10.1145/52325.52356

[Jer13] Samuel Jero. [RFC][PATCH] tfrc: Correct 2nd Loss Interval Handling.
Email to the Linux DCCP mailing list, April 2013. URL:
http://www.spinics.net/lists/dccp/msg04527.html

[JLddM10] G. D G Jaime, R.M.M. Leao, E. de Souza e Silva, and J.B.B. de Marca.
Effect of Varying the Intra-Frame Packet Burstiness on the Performance of
Wireless Video Streaming. In Global Telecommunications Conference
(GLOBECOM 2010), 2010 IEEE, pages 1–6, 2010.
doi:10.1109/GLOCOM.2010.5683762

[JSB+09] Van Jacobson, Diana K Smetters, Nicholas H Briggs, Michael F Plass, Paul
Stewart, James Thornton, and Rebecca L Braynard. VoCCN: Voice-over
Content-Centric Networks. In Proceedings of the 2009 workshop on
Re-architecting the internet, pages 1–6. ACM, 2009.
doi:10.1145/1658978.1658980

[KC11] Kyungtae Kim and Young-June Choi. Performance Comparison of Various
VoIP Codecs in Wireless Environments. In Proceedings of the 5th
International Conference on Ubiquitous Information Management and
Communication. ACM, 2011. doi:10.1145/1968613.1968718

[Ker07] Kernel Newbies. Linux 2 6 14, 2007. URL:
http://kernelnewbies.org/Linux 2 6 14

[Ker12] Kernel Newbies. Linux 3.2 - Linux Kernel Newbies, 2012. URL:
http://kernelnewbies.org/Linux 3.2

http://dx.doi.org/10.1145/52325.52356
http://www.spinics.net/lists/dccp/msg04527.html
http://dx.doi.org/10.1109/GLOCOM.2010.5683762
http://dx.doi.org/10.1145/1658978.1658980
http://dx.doi.org/10.1145/1968613.1968718
http://kernelnewbies.org/Linux_2_6_14
http://kernelnewbies.org/Linux_3.2

145

[KNF+00] Yoshirkiro Kikuchi, Toshiyuki Nomura, Shigeru Fukunaga, Yoshinori
Matsui, and Hideaki Kimata. RTP Payload Format for MPEG-4
Audio/Visual Streams. RFC 3016 (Proposed Standard), November 2000.

[KT97] Marwan Krunz and Satish K Tripathi. On the Characterization of VBR
MPEG Streams. In SIGMETRICS ’97 Proceedings of the 1997 ACM
SIGMETRICS international conference on Measurement and modeling of
computer systems, pages 192–202. ACM, 1997.
doi:10.1145/258612.258688

[LAG03] Yi J Liang, John G Apostolopoulos, and Bernd Girod. Analysis of Packet
Loss for Compressed Video: Does Burst-Length Matter? In Acoustics,
Speech, and Signal Processing, 2003. Proceedings. (ICASSP ’03). 2003
IEEE International Conference on, pages 684–687 vol.5, 2003.
doi:10.1109/ICASSP.2003.1200063

[Lib13] Libav. Libav, 2013. URL: https://libav.org/

[Lin13] Linphone. Linphone, an Open-Source Video SIP Phone, 2013. URL:
http://www.linphone.org/

[LKP08] Aggelos Lazaris, Polychronis Koutsakis, and Michael Paterakis. A New
Model for Video Traffic Originating from Multiplexed MPEG-4
Videoconference Streams. Performance Evaluation, 65(1):51–70, January
2008. doi:10.1016/j.peva.2007.02.004

[LL08] Y.C. Lai and Yuan-cheng Lai. DCCP Congestion Control with Virtual
Recovery to Achieve TCP-Fairness. IEEE Communications Letters,
12(1):50–52, January 2008. doi:10.1109/LCOMM.2008.071421

[LLA+04] Mingzhe Li, Choong-Soo Lee, Emmanuel Agu, Mark Claypool, and Robert
Kinicki. Performance Enhancement of TFRC in Wireless Ad Hoc
Networks. In DMS’04: Proceedings of the 10th International Conference
on Distributed Multimedia Systems, 2004.

[LM03] Olaf Landsiedel and Gary Minden. MPEG-4 for Interactive Low-delay
Real-time Communication. Technical Report ITTC-FY2004-TR-23150-10,
University of Kansas Information and Telecommunication Technology
Center, 2003.

[LTG99] F Le Le, F Toutain, and C Guillemot. Packet loss resilient MPEG-4
compliant video coding for the Internet. Signal Processing: Image
Communication, (15):35–56, 1999.

[LTHW10] Ying-Dar Lin, Chien-Chao Tseng, Cheng-Yuan Ho, and Yu-Hsien Wu.
How NAT-compatible are VoIP Applications? Communications Magazine,
IEEE, 48(12):58–65, 2010. doi:10.1109/MCOM.2010.5673073

http://dx.doi.org/10.1145/258612.258688
http://dx.doi.org/10.1109/ICASSP.2003.1200063
https://libav.org/
http://www.linphone.org/
http://dx.doi.org/10.1016/j.peva.2007.02.004
http://dx.doi.org/10.1109/LCOMM.2008.071421
http://dx.doi.org/10.1109/MCOM.2010.5673073

146

[LV91] S. Low and P. Varaiya. A Simple Theory of Traffic and Resource
Allocation in ATM. In IEEE Global Telecommunications Conference
GLOBECOM ’91: Countdown to the New Millennium. Conference Record,
pages 1633–1637. IEEE, 1991. doi:10.1109/GLOCOM.1991.188641

[Mat04] Nils-Erik Mattsson. A DCCP module for ns-2. Masters thesis, Lulea
Tekniska Universitet, ISSN, 2004.

[MMBK10] David Mills, Jim Martin, Jack Burbank, and William Kasch. Network Time
Protocol Version 4: Protocol and Algorithms Specification. RFC 5905
(Proposed Standard), June 2010.

[MMFR96] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. TCP
Selective Acknowledgment Options. RFC 2018 (Proposed Standard),
October 1996.

[Moc87] Paul Mockapetris. Domain names - implementation and specification. RFC
1035 (Standard), November 1987.

[Mov] Moving Pictures Experts Group. Advanced Video Coding — MPEG. URL:
http://mpeg.chiariglione.org/standards/mpeg-4/advanced-video-coding

[Mov13] Moving Pictures Experts Group. MPEG-4 — MPEG, 2013. URL:
http://mpeg.chiariglione.org/standards/mpeg-4

[MSMO97] Matt Mathis, Jeffrey Semke, Jamshid Mahdavi, and Teunis Ott. The
Macroscopic Behavior of the TCP Congestion Avoidance Algorithm.
SIGCOMM Computer Communications Review, 27(3):67–82, 1997.
doi:10.1145/263932.264023

[NAT06] P Navaratnam, N Akhtar, and R Tafazolli. On the Performance of DCCP in
Wireless Mesh Networks. In Proceedings of the 4th ACM international
workshop on Mobility management and wireless access, pages 144–147.
ACM, 2006. doi:10.1145/1164783.1164811

[Nat10] National Laboratory for Advanced Network Research. Iperf, 2010. URL:
http://iperf.sourceforge.net/

[NHG10] Shahrudin Awang Nor, Suhaidi Hassan, and Osman Ghazali. Friendliness
of DCCP towards TCP over large delay link networks. In Education
Technology and Computer (ICETC), 2010 2nd International Conference
on, volume 5, pages 286–291, 2010. doi:10.1109/ICETC.2010.5530062

[Ori10] Emanuele Oriani. qpsnr official homepage, 2010. URL:
http://qpsnr.youlink.org/

http://dx.doi.org/10.1109/GLOCOM.1991.188641
http://mpeg.chiariglione.org/standards/mpeg-4/advanced-video-coding
http://mpeg.chiariglione.org/standards/mpeg-4
http://dx.doi.org/10.1145/263932.264023
http://dx.doi.org/10.1145/1164783.1164811
http://iperf.sourceforge.net/
http://dx.doi.org/10.1109/ICETC.2010.5530062
http://qpsnr.youlink.org/

147

[Ost03] Shawn Ostermann. tcptrace - Official Homepage, 2003. URL:
http://www.tcptrace.org/

[OWS+06] Joerg Ott, Stephen Wenger, Noriyuki Sato, Carsten Burmeister, and Jose
Rey. Extended RTP Profile for Real-time Transport Control Protocol
(RTCP)-Based Feedback (RTP/AVPF). RFC 4585 (Proposed Standard),
July 2006.

[PACS11] Vern Paxson, Mark Allman, Jerry HK Chu, and Matt Sargent. Computing
TCP’s Retransmission Timer. RFC 6298 (Proposed Standard), June 2011.

[Per99] Alan Percy. Understanding Latency in IP Telephony. Technical report,
Brooktrout Technology, 1999.

[PG06] Colin Perkins and Ladan Gharai. RTP and the Datagram Congestion
Control Protocol. In Multimedia and Expo, 2006 IEEE International
Conference on, pages 1521–1524. IEEE, 2006.
doi:10.1109/ICME.2006.262832

[Phe08] Tom Phelan. DCCP-TP Home Page, May 2008. URL:
http://www.phelan-4.com/dccp-tp/tiki-index.php

[Pos80] Jon Postel. User Datagram Protocol. RFC 768 (Standard), August 1980.

[Pos81] Jon Postel. Transmission Control Protocol. RFC 793 (Standard),
September 1981.

[PUN12] Stefan Paulsen, Tadeus Uhl, and Krzysztof Nowicki. MPEG-4/AVC versus
MPEG-2 in IPTV. In Proceedings of the International Conference on
Signal Processing and Multimedia Application, pages 27–30, Rome, 2012.

[RCPC99] Hayder Radha, Yingwei Chen, Kavitha Parthasarathy, and Robert Cohen.
Scalable Internet video using MPEG-4. Signal Processing: Image
Communication, 15(1-2):95–126, September 1999.
doi:10.1016/S0923-5965(99)00026-0

[Ren07] Gerrit Renker. Linux/Documentation/networking/dccp.txt, 2007. URL:
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/

Documentation/networking/dccp.txt?id=refs/tags/v3.2.45

[Ren11] Gerrit Renker. dccp test-tree [ANNOUNCE] dccp: DCCP-Cubic / CCID-5
subtree available. Email to Linux DCCP mailing list, 2011. URL:
http://www.spinics.net/lists/dccp/msg04488.html

[RFB01] KK Ramakrishnan, Sally Floyd, and David Black. The Addition of Explicit
Congestion Notification (ECN) to IP. RFC 3168 (Proposed Standard),
September 2001.

http://www.tcptrace.org/
http://dx.doi.org/10.1109/ICME.2006.262832
http://www.phelan-4.com/dccp-tp/tiki-index.php
http://dx.doi.org/10.1016/S0923-5965(99)00026-0
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/networking/dccp.txt?id=refs/tags/v3.2.45
https://git.kernel.org/cgit/linux/kernel/git/stable/linux-stable.git/tree/Documentation/networking/dccp.txt?id=refs/tags/v3.2.45
http://www.spinics.net/lists/dccp/msg04488.html

148

[RPB+08] Merhrnoush Rahmani, Andrea Pettiti, Ernst Biersack, Eckehard Steinbach,
and Joachim Hillebrand. A Comparative Study of Network Transport
Protocols for In-Vehicle Media Streaming. In Multimedia and Expo, 2008
IEEE International Conference on, pages 441–444. IEEE, 2008.
doi:10.1109/ICME.2008.4607466

[SBJL08] Golam Sarwar, Roksana Boreli, Guillaume Jourjon, and Emmanuel Lochin.
Improvements in DCCP Congestion Control for Satellite Links. In 2008
IEEE International Workshop on Satellite and Space Communications,
pages 8–12. IEEE, October 2008. doi:10.1109/IWSSC.2008.4656732

[SBL09] Golam Sarwar, Roksana Boreli, and Emmanuel Lochin. Performance of
VoIP with DCCP for satellite links. In Communications, 2009. ICC ’09.
IEEE International Conference on, pages 1–5. IEEE, 2009.
doi:10.1109/ICC.2009.5199334

[Sea04] Michael Searles. Probe Based Dynamic Server Selection for Multimedia
Quality of Service. Masters thesis, University College Dublin, 2004.

[SF07] Arjuna Sathiaseelan and Gorry Fairhurst. Performance of VoIP using
DCCP over a DVB-RCS Satellite Network. In Communications, 2007. ICC
’07. IEEE International Conference on, pages 13–18. IEEE, 2007.

[SFCJ03] Henning Schulzrinne, Ron Frederick, Stephen Casner, and Van Jacobson.
RTP: A Transport Protocol for Real-Time Applications. RFC 3550
(Standard), 2003.

[Sky13] Skype Communications. Help for Skype: How much bandwidth does
Skype need?, 2013. URL: https://support.skype.com/en/faq/FA1417/

how-much-bandwidth-does-skype-need

[SLB07] G Sarwar, E Lochin, and R Boreli. Experimental Performance of DCCP
over Live Satellite and Long Range Wireless Links. In Communications
and Information Technologies, 2007. ISCIT ’07. International Symposium
on, pages 689–694. IEEE, 2007. doi:10.1109/ISCIT.2007.4392105

[Ste97] W Richard Stevens. TCP Slow Start, Congestion Avoidance, Fast
Retransmit, and Fast Recovery Algorithms. RFC 2001 (Proposed
Standard), January 1997.

[Tcp13] Tcpdump. Tcpdump/Libpcap public repository, 2013. URL:
http://www.tcpdump.org/

[The09] The Linux Foundation. dccp — The Linux Foundation, 2009. URL:
http://www.linuxfoundation.org/collaborate/workgroups/networking/dccp

http://dx.doi.org/10.1109/ICME.2008.4607466
http://dx.doi.org/10.1109/IWSSC.2008.4656732
http://dx.doi.org/10.1109/ICC.2009.5199334
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
https://support.skype.com/en/faq/FA1417/how-much-bandwidth-does-skype-need
http://dx.doi.org/10.1109/ISCIT.2007.4392105
http://www.tcpdump.org/
http://www.linuxfoundation.org/collaborate/workgroups/networking/dccp

149

[The13] The FreeBSD Project. IPFW, 2013. URL:
http://www.freebsd.org/doc/handbook/firewalls-ipfw.html

[TKI+05] Shigeki Takeuchi, Hiroyuki Koga, Katsuyoshi Iida, Youki Kadobayashi,
and Suguru Yamaguchi. Performance Evaluations of DCCP for Bursty
Traffic in Real-Time Applications. In Applications and the Internet, 2005.
Proceedings. The 2005 Symposium on, pages 142–149. IEEE, 2005.
doi:10.1109/SAINT.2005.51

[VN04] Ricardo N Vaz and Mario S Nunes. Selective Frame Discard for Video
Streaming over IP Networks. In Proceedings of the 7th Conference on
Computer Networks (CRC2004), Leira, Portugal, 2004.
doi:10.1.1.1.111.883

[VSB06] J Van Velthoven, K Spaey, and C Blondia. Performance of Constant
Quality Video Applications using the DCCP Transport Protocol. In Local
Computer Networks, Proceedings 2006 31st IEEE Conference on, page
511, Tampa, FL, 2006. Ieee. doi:10.1109/LCN.2006.322148

[Wai08] Wainhouse Research. Polycom’s Lost Packet Recovery (LPR) Capability.
Technical report, Wainhouse Research, 2008.

[Wal91] Gregory K Wallace. The JPEG Still Picture Compression Standard.
Consumer Electronics, IEEE Transactions on, 38(1):xviii – xxxiv, 1991.
doi:10.1109/30.125072

[WBSS04] Zhou Wang, Alan Conrad Bovik, Hamid Rahim Sheikh, and Eero P
Simoncelli. Image Quality Assessment: From Error Visibility to Structural
Similarity. Image Processing, IEEE Transactions on, 13(4):600–612, April
2004. doi:10.1109/TIP.2003.819861

[WH06] Joerg Widmer and Mark Handley. TCP-Friendly Multicast Congestion
Control (TFMCC): Protocol Specification. RFC 4654 (Experimental),
August 2006.

[WHZ+00] Dapeng Wu, YT Yiwei Thomas Hou, Wenwu Zhu Zhu, HJ Hung-Ju Lee,
Tihao Chaing, Ya-Qin Zhang, and Jonathan H Chao. On End-to-End
Architecture for Transporting MPEG-4 Video Over the Internet. IEEE
Transactions on Circuits and Systems for Video Technology, 1(6):923 –
941, 2000. doi:10.1109/76.867930

[WKD11] Daniel Wilson, Terry Koziniec, and Mike Dixon. Quantitative Analysis of
the Effects Queuing has on a CCID3 Controlled DCCP Flow. In Computer
Applications and Industrial Electronics (ICCAIE), 2011 IEEE
International Conference on, pages 529–534. IEEE, December 2011.
doi:10.1109/ICCAIE.2011.6162191

http://www.freebsd.org/doc/handbook/firewalls-ipfw.html
http://dx.doi.org/10.1109/SAINT.2005.51
http://dx.doi.org/10.1.1.1.111.883
http://dx.doi.org/10.1109/LCN.2006.322148
http://dx.doi.org/10.1109/30.125072
http://dx.doi.org/10.1109/TIP.2003.819861
http://dx.doi.org/10.1109/76.867930
http://dx.doi.org/10.1109/ICCAIE.2011.6162191

150

[WM08] Stefan Winkler and Praveen Mohandas. The Evolution of Video Quality
Measurement: From PSNR to Hybrid Metrics. IEEE Transactions on
Broadcasting, 54(3):660–668, September 2008.
doi:10.1109/TBC.2008.2000733

[WSL00] Benjamin W Wah, Xiao Su, and Dong Lin. A Survey of Error-Concealment
Schemes for Real-Time Audio and Video Transmissions over the Internet.
In Multimedia Software Engineering, 2000. Proceedings. International
Symposium on, pages 17–24. IEEE, 2000.
doi:10.1109/MMSE.2000.897185

[WW07] Chungyi Wang and Qunicy Wu. Information Hiding in Real-time VoIP
Streams. In Ninth IEEE International Symposium on Multimedia, pages
255 – 262. IEEE, 2007. doi:10.1109/ISM.2007.4412381

[WW08] Jiayu Wang and Quincy Wu. Porting VoIP applications to DCCP. In
Proceedings of the International Conference on Mobile Technology,
Applications, and Systems, number 1, pages 8:1—-8:6, New York, New
York, USA, 2008. ACM Press. doi:10.1145/1506270.1506281

[Zol02] Eiman Zolfaghari. Work on the Datagram Congestion Control Protocol,
May 2002. URL: http://cseweb.ucsd.edu/∼tsohn/projects/dccp/

[ZXH+12] Xinggong Zhang, Yang Xu, Hao Hu, Yong Liu, Zonging Guo, and Yao
Wang. Profiling Skype Video Calls: Rate Control and Video Quality. In
2012 Proceedings IEEE INFOCOM, pages 621–629. IEEE, March 2012.
doi:10.1109/INFCOM.2012.6195805

http://dx.doi.org/10.1109/TBC.2008.2000733
http://dx.doi.org/10.1109/MMSE.2000.897185
http://dx.doi.org/10.1109/ISM.2007.4412381
http://dx.doi.org/10.1145/1506270.1506281
http://cseweb.ucsd.edu/~tsohn/projects/dccp/
http://dx.doi.org/10.1109/INFCOM.2012.6195805

151

Appendix A: LinphoneModifications
A.1 DCCP Support

Adding basic DCCP support to Linphone consisted of modifying the oRTP library to
utilize DCCP sockets instead of UDP sockets. This was complicated by the fact that
DCCP is a connection oriented protocol, requiring connect() and accept() calls, while
UDP is connectionless.

The relevant sections of code, all from oRTP/src/rtpsession inet.c, appear below. This
code is based off of oRTP revision b1590514c98d33e5464d46317fdeaec52f778de7 from
git://git.linphone.org/linphone.git pulled on 2012-12-28.

oRTP/src/rtpsession inet.c
#define CCID2_REJECT_DELAY_MSEC 3000

#define CCID3_REJECT_DELAY_MSEC 1000

#define BW_SAMPLE_PERIOD_MSEC 1000

#define DCCP_SERVICE_CODE 1381257281

#define ORTP_DCCP 1

#ifndef SOL_DCCP

#define SOL_DCCP 269

#endif

#ifdef ORTP_DCCP

#include <linux/dccp.h>

/** tfrc_tx_info - TFRC Sender Data Structure

*/

struct tfrc_tx_info {

__u64 tfrctx_x;

__u64 tfrctx_x_recv;

__u32 tfrctx_x_calc;

__u32 tfrctx_rtt;

__u32 tfrctx_p;

__u32 tfrctx_rto;

__u32 tfrctx_ipi;

};

#endif

static bool_t try_connect(int fd, const struct sockaddr *dest,

socklen_t addrlen){

if (connect(fd,dest,addrlen)<0){

ortp_warning("Could not connect() socket: %s",getSocketError

());

return FALSE;

}

return TRUE;

git://git.linphone.org/linphone.git

152

}

int set_dccp_q_len(int sock, int len){

bool_t done=FALSE;

#ifdef ORTP_DCCP

int err;

int val=len;

if (len>0){

err = setsockopt(sock, SOL_DCCP, DCCP_SOCKOPT_QPOLICY_TXQLEN ,

(void *)&val, sizeof(val));

if (err < 0) {

ortp_error("Failed to increase socket’s transmission queue:

%s.", getSocketError());

}else{

ortp_message("Setting DCCP queue length to: %i.", len);

done=TRUE;

}

}

#endif

return done;

}

static ortp_socket_t dccp_accept(int fd){

ortp_socket_t nsock;

#ifdef ORTP_DCCP

#ifdef ORTP_INET6

struct sockaddr_storage remaddr;

#else

struct sockaddr remaddr;

#endif

socklen_t addrlen;

int err;

do{

addrlen=sizeof(remaddr);

err=accept(fd, (struct sockaddr*)&remaddr, &addrlen);

if(err<0){

ortp_warning ("Error accepting on Socket: %s.",

getSocketError());

return err;

}

}while(err<0);

nsock=err;

#endif /*ORTP_DCCP*/

return nsock;

153

}

static ortp_socket_t create_dccp_send_socket(const char *addr,

int port, int *sock_family , bool_t reuse_addr , int ccid){

ortp_socket_t sock=-1;

#ifdef ORTP_DCCP

int err;

int optval = 1;

uint8_t ccidval;

#ifdef ORTP_INET6

char num[8];

struct addrinfo hints, *res0, *res;

#else

struct sockaddr_in saddr;

#endif

#ifdef ORTP_INET6

memset(&hints, 0, sizeof(hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_DCCP;

snprintf(num, sizeof(num), "%d",port);

err = getaddrinfo(addr,num, &hints, &res0);

if (err!=0) {

ortp_warning ("Error in getaddrinfo on (addr=%s port=%i): %s"

, addr, port, gai_strerror(err));

return -1;

}

for (res = res0; res; res = res->ai_next) {

sock = socket(res->ai_family , res->ai_socktype , IPPROTO_DCCP)

;

*sock_family=res->ai_family;

if (sock==-1)

continue;

if (reuse_addr){

err = setsockopt (sock, SOL_SOCKET , SO_REUSEADDR ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

154

ortp_warning ("Fail to set rtp address reusable: %s.",

getSocketError());

}

}

#if defined(ORTP_TIMESTAMP)

err = setsockopt (sock, SOL_SOCKET , SO_TIMESTAMP ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set rtp timestamp: %s.",

getSocketError());

}

#endif

*sock_family=res->ai_family;

break;

}

freeaddrinfo(res0);

#else

saddr.sin_family = AF_INET;

*sock_family=AF_INET;

err = inet_aton (addr, &saddr.sin_addr);

if (err < 0)

{

ortp_warning ("Error in socket address:%s.", getSocketError()

);

return -1;

}

saddr.sin_port = htons (port);

sock = socket (PF_INET, SOCK_DCCP , IPPROTO_DCCP);

if (sock==-1) return -1;

if (reuse_addr){

err = setsockopt (sock, SOL_SOCKET , SO_REUSEADDR ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set rtp address reusable: %s.",

getSocketError());

}

}

#if defined(ORTP_TIMESTAMP)

err = setsockopt (sock, SOL_SOCKET , SO_TIMESTAMP ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

155

if (err < 0)

{

ortp_warning ("Fail to set rtp timestamp: %s.",getSocketError

());

}

#endif

#endif

#if defined(WIN32) || defined(_WIN32_WCE)

if (ortp_WSARecvMsg == NULL) {

GUID guid = WSAID_WSARECVMSG;

DWORD bytes_returned;

if (WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER , &guid,

sizeof(guid),

&ortp_WSARecvMsg , sizeof(ortp_WSARecvMsg), &bytes_returned ,

NULL, NULL) == SOCKET_ERROR) {

ortp_warning("WSARecvMsg function not found.");

}

}

#endif

optval=htonl(DCCP_SERVICE_CODE);

err = setsockopt (sock, SOL_DCCP, DCCP_SOCKOPT_SERVICE , (

SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set DCCP service code: %s.",

getSocketError());

}

ccidval=ccid;

err = setsockopt (sock, SOL_DCCP, DCCP_SOCKOPT_CCID , (

SOCKET_OPTION_VALUE)&ccidval, sizeof (ccidval));

if (err < 0)

{

ortp_warning ("Fail to set DCCP CCID: %s.",getSocketError());

}

#endif /*ORTP_DCCP*/

return sock;

}

static ortp_socket_t create_dccp_accept_socket(const char *addr,

int port, int *sock_family , bool_t reuse_addr ,int ccid){

ortp_socket_t sock=-1;

#ifdef ORTP_DCCP

int err;

int optval = 1;

uint8_t ccidval;

156

#ifdef ORTP_INET6

char num[8];

struct addrinfo hints, *res0, *res;

#else

struct sockaddr_in saddr;

#endif

#ifdef ORTP_INET6

memset(&hints, 0, sizeof(hints));

hints.ai_family = PF_UNSPEC;

hints.ai_socktype = SOCK_DCCP;

snprintf(num, sizeof(num), "%d",port);

err = getaddrinfo(addr,num, &hints, &res0);

if (err!=0) {

ortp_warning ("Error in getaddrinfo on (addr=%s port=%i): %s"

, addr, port, gai_strerror(err));

return -1;

}

for (res = res0; res; res = res->ai_next) {

sock = socket(res->ai_family , res->ai_socktype , IPPROTO_DCCP)

;

*sock_family=res->ai_family;

if (sock==-1)

continue;

if (reuse_addr){

err = setsockopt (sock, SOL_SOCKET , SO_REUSEADDR ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set rtp address reusable: %s.",

getSocketError());

}

}

#if defined(ORTP_TIMESTAMP)

err = setsockopt (sock, SOL_SOCKET , SO_TIMESTAMP ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

157

ortp_warning ("Fail to set rtp timestamp: %s.",

getSocketError());

}

#endif

err = bind(sock, res->ai_addr, res->ai_addrlen);

if (err != 0){

ortp_warning ("Fail to bind rtp socket to (addr=%s port=%i)

: %s.", addr,port, getSocketError());

close_socket (sock);

sock=-1;

continue;

}

*sock_family=res->ai_family;

break;

}

freeaddrinfo(res0);

#else

saddr.sin_family = AF_INET;

*sock_family=AF_INET;

err = inet_aton (addr, &saddr.sin_addr);

if (err < 0)

{

ortp_warning ("Error in socket address:%s.", getSocketError()

);

return -1;

}

saddr.sin_port = htons (port);

sock = socket (PF_INET, SOCK_DCCP , IPPROTO_DCCP);

if (sock==-1) return -1;

if (reuse_addr){

err = setsockopt (sock, SOL_SOCKET , SO_REUSEADDR ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set rtp address reusable: %s.",

getSocketError());

}

}

err = bind (sock,(struct sockaddr *) &saddr, sizeof (saddr));

if (err != 0)

158

{

ortp_warning ("Fail to bind rtp socket to port %i: %s.", port

, getSocketError());

close_socket (sock);

return -1;

}

#if defined(ORTP_TIMESTAMP)

err = setsockopt (sock, SOL_SOCKET , SO_TIMESTAMP ,

(SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set rtp timestamp: %s.",getSocketError

());

}

#endif

#endif

#if defined(WIN32) || defined(_WIN32_WCE)

if (ortp_WSARecvMsg == NULL) {

GUID guid = WSAID_WSARECVMSG;

DWORD bytes_returned;

if (WSAIoctl(sock, SIO_GET_EXTENSION_FUNCTION_POINTER , &guid,

sizeof(guid),

&ortp_WSARecvMsg , sizeof(ortp_WSARecvMsg), &bytes_returned ,

NULL, NULL) == SOCKET_ERROR) {

ortp_warning("WSARecvMsg function not found.");

}

}

#endif

optval=htonl(DCCP_SERVICE_CODE);

err = setsockopt (sock, SOL_DCCP, DCCP_SOCKOPT_SERVICE , (

SOCKET_OPTION_VALUE)&optval, sizeof (optval));

if (err < 0)

{

ortp_warning ("Fail to set DCCP service code: %s.",

getSocketError());

}

ccidval=ccid;

err = setsockopt (sock, SOL_DCCP, DCCP_SOCKOPT_CCID , (

SOCKET_OPTION_VALUE)&ccidval, sizeof (ccidval));

if (err < 0)

{

ortp_warning ("Fail to set DCCP CCID: %s.",getSocketError());

}

159

err=listen(sock,5);

if(err<0){

ortp_warning ("Error listening on Socket:%s.", getSocketError

());

close_socket (sock);

return -1;

}

set_non_blocking_socket(sock);

#endif /*ORTP_DCCP*/

return sock;

}

static ortp_socket_t create_and_bind_dccp_random(const char *

localip, int *sock_family , int *port,bool_t send, int ccid){

int retry;

ortp_socket_t sock = -1;

for (retry=0;retry <100;retry++)

{

int localport;

do

{

localport = (rand () + 5000) & 0xfffe;

}

while ((localport < 5000) || (localport > 0xffff));

/*do not set REUSEADDR in case of random allocation */

if(send){

sock = create_dccp_send_socket(localip, localport ,

sock_family ,FALSE, ccid);

}else{

sock = create_dccp_accept_socket(localip, localport ,

sock_family ,FALSE, ccid);

}

if (sock!=-1) {

*port=localport;

return sock;

}

}

ortp_warning("create_and_bind_random: Could not find a random

port for %s !",localip);

return -1;

}

/**

*rtp_session_set_local_addr:

160

*@session: a rtp session freshly created.

*@addr: a local IP address in the xxx.xxx.xxx.xxx form.

*@rtp_port: a local port or -1 to let oRTP choose the port

randomly

*@rtcp_port: a local port or -1 to let oRTP choose the port

randomly

*

* Specify the local addr to be use to listen for rtp packets or

to send rtp packet from.

* In case where the rtp session is send-only, then it is not

required to call this function:

* when calling rtp_session_set_remote_addr(), if no local

address has been set, then the

* default INADRR_ANY (0.0.0.0) IP address with a random port

will be used. Calling

* rtp_sesession_set_local_addr() is mandatory when the session

is recv-only or duplex.

*

* Returns: 0 on success.

**/

int

rtp_session_set_local_addr (RtpSession * session, const char *

addr, int rtp_port , int rtcp_port)

{

ortp_socket_t sock1;

ortp_socket_t sock2;

int sockfamily=0;

int port;

if (session->rtp.s_socket!=(ortp_socket_t)-1 || session->rtp.

a_socket!=(ortp_socket_t)-1){

/* don’t rebind, but close before*/

rtp_session_release_sockets(session);

}

/* try to bind the rtp port */

if (session->rtp.is_dccp){

if (rtp_port >0){

sock1=create_dccp_accept_socket(addr,rtp_port ,&sockfamily ,

session->reuseaddr ,session->rtp.dccp_ccid);

}else{

sock1=create_and_bind_dccp_random(addr,&sockfamily ,&

rtp_port ,FALSE,session->rtp.dccp_ccid);

}

161

sock2=create_and_bind_dccp_random(addr,&sockfamily ,&port,TRUE

,session->rtp.dccp_ccid);

set_dccp_q_len(sock2, session->rtp.dccp_q_len);

}else{

if (rtp_port >0)

sock1=create_udp_socket(addr,rtp_port ,&sockfamily ,session->

reuseaddr);

else

sock1=create_and_bind_udp_random(addr,&sockfamily ,&rtp_port

);

sock2=sock1;

}

if (sock1!=-1 && sock2!=-1){

if(session->rtp.is_dccp){

set_socket_sizes(sock1,session->rtp.snd_socket_size ,session

->rtp.rcv_socket_size);

set_socket_sizes(sock2,session->rtp.snd_socket_size ,session

->rtp.rcv_socket_size);

session->rtp.s_socket=sock2;

session->rtp.a_socket=sock1;

}else{

set_socket_sizes(sock1,session->rtp.snd_socket_size ,session

->rtp.rcv_socket_size);

session->rtp.s_socket=sock1;

session->rtp.r_socket=sock1;

session->rtp.a_socket=sock1;

}

session->rtp.sockfamily=sockfamily;

session->rtp.loc_port=rtp_port;

/*try to bind rtcp port */

if (rtcp_port <0) rtcp_port=rtp_port+1;

sock1=create_udp_socket(addr,rtcp_port ,&sockfamily ,session->

reuseaddr);

if (sock1!=(ortp_socket_t)-1){

session->rtcp.sockfamily=sockfamily;

session->rtcp.socket=sock1;

}else{

ortp_warning("Could not create and bind rtcp socket.");

}

/* set socket options (but don’t change chosen states) */

rtp_session_set_dscp(session, -1);

if(!session->rtp.is_dccp){

162

rtp_session_set_multicast_ttl(session, -1);

rtp_session_set_multicast_loopback(session, -1);

}

return 0;

}

ortp_debug("Could not bind RTP socket on port to %s port %i",

addr,rtp_port);

return -1;

}

#define IP_UDP_OVERHEAD (20+8)

#define IP6_UDP_OVERHEAD (40+8)

#define IP_DCCP_OVERHEAD (20+30)

#define IP6_DCCP_OVERHEAD (40+30)

static void update_sent_bytes(RtpSession*s, int nbytes){

int overhead;

#ifdef ORTP_INET6

if(s->rtp.is_dccp){

overhead=(s->rtp.sockfamily==AF_INET6) ? IP6_DCCP_OVERHEAD :

IP_DCCP_OVERHEAD;

}else{

overhead=(s->rtp.sockfamily==AF_INET6) ? IP6_UDP_OVERHEAD :

IP_UDP_OVERHEAD;

}

#else

if(s->rtp.is_dccp){

overhead=IP_DCCP_OVERHEAD;

}else{

overhead=IP_UDP_OVERHEAD;

}

#endif

if (s->rtp.sent_bytes==0){

gettimeofday(&s->rtp.send_bw_start ,NULL);

}

s->rtp.sent_bytes+=nbytes+overhead;

}

static void update_recv_bytes(RtpSession*s, int nbytes){

int overhead;

#ifdef ORTP_INET6

if(s->rtp.is_dccp){

overhead=(s->rtp.sockfamily==AF_INET6) ? IP6_DCCP_OVERHEAD :

IP_DCCP_OVERHEAD;

163

}else{

overhead=(s->rtp.sockfamily==AF_INET6) ? IP6_UDP_OVERHEAD :

IP_UDP_OVERHEAD;

}

#else

if(s->rtp.is_dccp){

overhead=IP_DCCP_OVERHEAD;

}else{

overhead=IP_UDP_OVERHEAD;

}

#endif

if (s->rtp.recv_bytes==0){

gettimeofday(&s->rtp.recv_bw_start ,NULL);

}

s->rtp.recv_bytes+=nbytes+overhead;

}

int

rtp_session_rtp_send (RtpSession * session, mblk_t * m)

{

int error;

int i;

rtp_header_t *hdr;

struct sockaddr *destaddr=(struct sockaddr*)&session->rtp.

rem_addr;

socklen_t destlen=session->rtp.rem_addrlen;

ortp_socket_t sockfd=session->rtp.s_socket;

hdr = (rtp_header_t *) m->b_rptr;

/* perform host to network conversions */

hdr->ssrc = htonl (hdr->ssrc);

hdr->timestamp = htonl (hdr->timestamp);

hdr->seq_number = htons (hdr->seq_number);

for (i = 0; i < hdr->cc; i++)

hdr->csrc[i] = htonl (hdr->csrc[i]);

if(session->rtp.is_dccp && session->rtp.s_connected==FALSE){

if (connect(sockfd,destaddr ,destlen)<0){

if(errno!=EISCONN){

ortp_warning("Could not connect() socket: %s",

getSocketError());

return -1;

}

}

set_non_blocking_socket(sockfd);

164

session->rtp.s_connected=TRUE;

destaddr=NULL;

destlen=0;

}

if (session->flags & RTP_SOCKET_CONNECTED) {

destaddr=NULL;

destlen=0;

}

if (rtp_session_using_transport(session, rtp)){

error = (session->rtp.tr->t_sendto) (session->rtp.tr,m,0,

destaddr ,destlen);

}else{

#ifdef USE_SENDMSG

error=rtp_sendmsg(sockfd,m,destaddr,destlen);

#else

if (m->b_cont!=NULL)

msgpullup(m,-1);

error = sendto (sockfd, (char*)m->b_rptr, (int) (m->b_wptr -

m->b_rptr),

0,destaddr,destlen);

#endif

}

if (error < 0){

if (session->on_network_error.count >0){

rtp_signal_table_emit3(&session->on_network_error ,(long)"

Error sending RTP packet",INT_TO_POINTER(

getSocketErrorCode()));

}else ortp_warning ("Error sending rtp packet: %s ; socket=%i

", getSocketError(), sockfd);

session->rtp.send_errno=getSocketErrorCode();

if(errno!=EINTR && errno!=EAGAIN && errno!=EWOULDBLOCK){

session->rtp.s_connected=FALSE;

}

if(session->rtp.is_dccp && (errno==EAGAIN || errno==

EWOULDBLOCK) && session->eventqs!=NULL){

session->rtp.stats.rejected++;

OrtpEvent *ev;

OrtpEventData *evd;

struct timeval tm;

long msec;

gettimeofday(&tm,NULL);

msec=(tm.tv_sec- session->rtp.last_reject.tv_sec)*1000;

165

msec+=(tm.tv_usec- session->rtp.last_reject.tv_usec)

/1000;

if((session->rtp.dccp_ccid == 3 && msec >

CCID3_REJECT_DELAY_MSEC) ||

(session->rtp.dccp_ccid == 2 && msec >

CCID2_REJECT_DELAY_MSEC)){

gettimeofday(&session->rtp.last_reject ,NULL);

ev=ortp_event_new(ORTP_EVENT_SEND_REJECTED);

evd=ortp_event_get_data(ev);

evd->packet=dupmsg(m);

rtp_session_dispatch_event(session,ev);

}

struct timeval now;

gettimeofday(&now,NULL);

struct tm *timeinfo;

char buffer[80];

timeinfo=localtime(&now.tv_sec);

strftime(buffer ,80,"%Y-%m-%d_%H:%M:%S",timeinfo);

ortp_message("sjero-info: Rejected Send. time=%s.%06d

session=%p",buffer, (int)now.tv_usec, session);

}

}else{

update_sent_bytes(session,error);

#ifdef ORTP_DCCP

if(session->rtp.is_dccp && session->rtp.dccp_ccid==3){

struct timeval tm;

long msec;

gettimeofday(&tm,NULL);

msec=(tm.tv_sec- session->rtp.last_bw_update.tv_sec)*1000;

msec+=(tm.tv_usec- session->rtp.last_bw_update.tv_usec)

/1000;

if(msec >= BW_SAMPLE_PERIOD_MSEC){

gettimeofday(&session->rtp.last_bw_update ,NULL);

struct tfrc_tx_info ifo;

socklen_t len=sizeof(ifo);

if(getsockopt(session->rtp.s_socket ,SOL_DCCP ,

DCCP_SOCKOPT_CCID_TX_INFO ,&ifo,&len)>=0){

OrtpEvent *ev;

OrtpEventData *evd;

ev=ortp_event_new(ORTP_EVENT_BANDWIDTH);

evd=ortp_event_get_data(ev);

evd->info.bandwidth=(ifo.tfrctx_x >>6)*8;

rtp_session_dispatch_event(session,ev);

}

166

}

}

#endif

}

freemsg (m);

return error;

}

int rtp_session_rtp_recv (RtpSession * session, uint32_t user_ts)

{

int error=0;

ortp_socket_t sockfd=session->rtp.r_socket;

ortp_socket_t new;

#ifdef ORTP_INET6

struct sockaddr_storage remaddr;

#else

struct sockaddr remaddr;

#endif

socklen_t addrlen = sizeof (remaddr);

mblk_t *mp;

if ((session->rtp.a_socket==(ortp_socket_t)-1) && !

rtp_session_using_transport(session, rtp)) return -1; /*

session has no sockets for the moment*/

while (1)

{

bool_t sock_connected=!!(session->flags &

RTP_SOCKET_CONNECTED);

if (session->rtp.cached_mp==NULL)

session->rtp.cached_mp = msgb_allocator_alloc(&session->

allocator ,session->recv_buf_size);

mp=session->rtp.cached_mp;

if(session->rtp.is_dccp){

if (session->rtp.r_connected==FALSE){

if((new=dccp_accept(session->rtp.a_socket))<0){

return -1;

}

sockfd=session->rtp.r_socket=new;

set_non_blocking_socket(sockfd);

session->rtp.r_connected=TRUE;

}else{

if (rtp_session_using_transport(session, rtp)) {

167

error = (session->rtp.tr->t_recvfrom)(session->rtp.tr,

mp, 0,

(struct sockaddr *) &remaddr,

&addrlen);

} else { error = rtp_session_rtp_recv_abstract(sockfd, mp

, 0,

NULL,NULL);

}

}

}else{

if (sock_connected){

error=rtp_session_rtp_recv_abstract(sockfd, mp, 0, NULL,

NULL);

}else if (rtp_session_using_transport(session, rtp)) {

error = (session->rtp.tr->t_recvfrom)(session->rtp.tr, mp

, 0,

(struct sockaddr *) &remaddr,

&addrlen);

} else { error = rtp_session_rtp_recv_abstract(sockfd, mp,

0,

(struct sockaddr *) &remaddr,

&addrlen);

}

}

if (error > 0){

if (session->rtp.is_dccp==FALSE && session->use_connect){

/* In the case where use_connect is false, symmetric RTP

is handled in rtp_session_rtp_parse() */

if (session->symmetric_rtp && !sock_connected){

/* store the sender rtp address to do symmetric RTP */

memcpy(&session->rtp.rem_addr ,&remaddr,addrlen);

session->rtp.rem_addrlen=addrlen;

if (try_connect(sockfd ,(struct sockaddr*)&remaddr,

addrlen))

session->flags|=RTP_SOCKET_CONNECTED;

}

}

mp->b_wptr+=error;

if (session->net_sim_ctx)

mp=rtp_session_network_simulate(session,mp);

/* then parse the message and put on jitter buffer queue */

if (mp){

update_recv_bytes(session,mp->b_wptr-mp->b_rptr);

rtp_session_rtp_parse(session, mp, user_ts, (struct

sockaddr*)&remaddr,addrlen);

168

}

session->rtp.cached_mp=NULL;

/*for bandwidth measurements:*/

}

else

{

int errnum;

if (error==-1 && !is_would_block_error((errnum=

getSocketErrorCode())))

{

if (session->on_network_error.count >0){

rtp_signal_table_emit3(&session->on_network_error ,(long

)"Error receiving RTP packet",INT_TO_POINTER(

getSocketErrorCode()));

}else ortp_warning("Error receiving RTP packet: %s, err

num [%i],error [%i]",getSocketError(),errnum,error);

#ifdef __ios

/*hack for iOS and non-working socket because of

background mode*/

if (errnum==ENOTCONN){

/*re-create new sockets */

rtp_session_set_local_addr(session,session->rtp.

sockfamily==AF_INET ? "0.0.0.0" : "::0",session->rtp

.loc_port,session->rtcp.loc_port);

}

#endif

if(session->rtp.is_dccp){

close_socket(session->rtp.r_socket);

session->rtp.r_connected=FALSE;

}

}else{

/*EWOULDBLOCK errors or transports returning 0 are

ignored.*/

if (session->net_sim_ctx){

/*drain possible packets queued in the network

simulator*/

mp=rtp_session_network_simulate(session,NULL);

if (mp){

/* then parse the message and put on jitter buffer

queue */

update_recv_bytes(session,msgdsize(mp));

rtp_session_rtp_parse(session, mp, user_ts, (struct

sockaddr*)&session->rtp.rem_addr ,session->rtp.

rem_addrlen);

169

}

}

}

/* don’t free the cached_mp , it will be reused next time */

return -1;

}

}

return error;

}

A.2 Bitrate Control

Full DCCP support also required modifying Linphone’s bitrate control code to
handle feedback from DCCP. We present our modifications below.

Linphone’s bitrate control code is divided into three files. qosanalyzer.c takes
feedback information and determines if the connection is still in an acceptable state.
bitratecontrol.c contains the bitrate control state machine, which takes the
recommendations from qosanalyzer.c and makes a decision about what to do. It also
handles gradually increasing the bitrate under good network condtions. Finally,
bitratedriver.c handles the actual interaction with the video codec to achieve the requested
bitrate change.

The relevant sections of code appear below. This code is based off of mediastreamer2
revision 22f54d4038fd4ba2897e506be776fe3c0956dd3d from
git://git.linphone.org/linphone.git pulled on 2012-12-28.

mediastreamer2/src/qosanalyzer.c
#define STATS_HISTORY 3

static const float unacceptable_loss_rate=10;

static const int big_jitter=10; /*ms */

static const float significant_delay=0.2; /*seconds*/

typedef struct rtpstats{

uint64_t high_seq_recv; /*highest sequence number received*/

float lost_percentage; /*percentage of lost packet since last

report*/

float int_jitter; /*interrarrival jitter */

float rt_prop; /*round trip propagation*/

bool_t send_refused;

}rtpstats_t;

typedef struct _MSSimpleQosAnalyser{

MSQosAnalyser parent;

RtpSession *session;

git://git.linphone.org/linphone.git

170

int clockrate;

rtpstats_t stats[STATS_HISTORY];

int curindex;

bool_t rt_prop_doubled;

bool_t send_was_refused;

bool_t pad[2];

}MSSimpleQosAnalyser;

static bool_t rt_prop_doubled(rtpstats_t *cur,rtpstats_t *prev){

//ms_message("AudioBitrateController: cur=%f, prev=%f",cur->

rt_prop,prev->rt_prop);

if (cur->rt_prop >=significant_delay && prev->rt_prop >0){

if (cur->rt_prop >=(prev->rt_prop*2.0)){

/*propagation doubled since last report */

return TRUE;

}

}

return FALSE;

}

static bool_t rt_prop_increased(MSSimpleQosAnalyser *obj){

rtpstats_t *cur=&obj->stats[obj->curindex % STATS_HISTORY];

rtpstats_t *prev=&obj->stats[(STATS_HISTORY+obj->curindex -1) %

STATS_HISTORY];

if (rt_prop_doubled(cur,prev)){

obj->rt_prop_doubled=TRUE;

return TRUE;

}

return FALSE;

}

static bool_t simple_analyser_process_rejected_send(MSQosAnalyser

*objbase){

MSSimpleQosAnalyser *obj=(MSSimpleQosAnalyser*)objbase;

rtpstats_t *cur;

cur=&obj->stats[obj->curindex % STATS_HISTORY];

cur->send_refused=TRUE;

obj->send_was_refused=TRUE;

return TRUE;

}

171

static bool_t simple_analyser_process_rtcp(MSQosAnalyser *objbase

, mblk_t *rtcp){

MSSimpleQosAnalyser *obj=(MSSimpleQosAnalyser*)objbase;

rtpstats_t *cur;

const report_block_t *rb=NULL;

if(obj->session->rtp.is_dccp){

return TRUE;

}

if (rtcp_is_SR(rtcp)){

rb=rtcp_SR_get_report_block(rtcp,0);

}else if (rtcp_is_RR(rtcp)){

rb=rtcp_RR_get_report_block(rtcp,0);

}

if (rb && report_block_get_ssrc(rb)==rtp_session_get_send_ssrc(

obj->session)){

obj->curindex++;

cur=&obj->stats[obj->curindex % STATS_HISTORY];

if (obj->clockrate==0){

PayloadType *pt=rtp_profile_get_payload(

rtp_session_get_send_profile(obj->session),

rtp_session_get_send_payload_type(obj->session));

if (pt!=NULL) obj->clockrate=pt->clock_rate;

else return FALSE;

}

cur->high_seq_recv=report_block_get_high_ext_seq(rb);

cur->lost_percentage=100.0*(float)

report_block_get_fraction_lost(rb)/256.0;

cur->int_jitter=1000.0*(float)

report_block_get_interarrival_jitter(rb)/(float)obj->

clockrate;

cur->rt_prop=rtp_session_get_round_trip_propagation(obj->

session);

cur->send_refused=FALSE;

ms_message("MSQosAnalyser: lost_percentage=%f, int_jitter=%f

ms, rt_prop=%f sec",cur->lost_percentage ,cur->int_jitter ,

cur->rt_prop);

}

return rb!=NULL;

}

172

static void simple_analyser_suggest_action(MSQosAnalyser *objbase

, MSRateControlAction *action){

MSSimpleQosAnalyser *obj=(MSSimpleQosAnalyser*)objbase;

rtpstats_t *cur=&obj->stats[obj->curindex % STATS_HISTORY];

/*big losses and big jitter */

if (cur->lost_percentage >=unacceptable_loss_rate && cur->

int_jitter >=big_jitter){

action->type=MSRateControlActionDecreaseBitrate;

action->value=MIN(cur->lost_percentage ,50);

ms_message("MSQosAnalyser: loss rate unacceptable and big

jitter");

}else if (rt_prop_increased(obj)){

action->type=MSRateControlActionDecreaseBitrate;

action->value=20;

ms_message("MSQosAnalyser: rt_prop doubled.");

}else if (cur->send_refused){

action->type=MSRateControlActionDecreaseBitrate;

action->value=30;

ms_message("MSQosAnalyser: send refused, cut bitrate");

cur->send_refused=FALSE;

}else if (cur->lost_percentage >=unacceptable_loss_rate){

/*big loss rate but no jitter, and no big rtp_prop: pure

lossy network*/

action->type=MSRateControlActionDecreasePacketRate;

action->value=20; /*For video, this is equivalent to

Decreasing bitrate*/

ms_message("MSQosAnalyser: loss rate unacceptable.");

}else{

action->type=MSRateControlActionDoNothing;

ms_message("MSQosAnalyser: everything is fine.");

}

}

static bool_t simple_analyser_has_improved(MSQosAnalyser *objbase

){

MSSimpleQosAnalyser *obj=(MSSimpleQosAnalyser*)objbase;

rtpstats_t *cur=&obj->stats[obj->curindex % STATS_HISTORY];

rtpstats_t *prev=&obj->stats[(STATS_HISTORY+obj->curindex -1) %

STATS_HISTORY];

if(cur->send_refused==TRUE){

goto end;

}

if (prev->lost_percentage >=unacceptable_loss_rate){

if (cur->lost_percentage <prev->lost_percentage){

173

ms_message("MSQosAnalyser: lost percentage has improved");

return TRUE;

}else goto end;

}

if (obj->rt_prop_doubled){

if(cur->rt_prop<prev->rt_prop){

ms_message("MSQosAnalyser: rt prop decrased");

obj->rt_prop_doubled=FALSE;

return TRUE;

}else goto end;

}

if (obj->send_was_refused){

if(cur->send_refused==FALSE){

obj->send_was_refused=FALSE;

return TRUE;

}else goto end;

}

end:

ms_message("MSQosAnalyser: no improvements.");

return FALSE;

}

mediastreamer2/src/bitratecontrol.c
#define CCID2_ADJUSTMENT_WAIT_MSEC 3000

#define CCID3_ADJUSTMENT_WAIT_MSEC 1000

static const int probing_up_interval=10;

struct _MSBitrateController{

MSQosAnalyser *analyser;

MSBitrateDriver *driver;

enum state_t state;

int stable_count;

int probing_up_count;

struct timeval last_change;

int adjust_wait;

};

MSBitrateController *ms_bitrate_controller_new(MSQosAnalyser *

qosanalyser , MSBitrateDriver *driver, RtpSession *session){

MSBitrateController *obj=ms_new0(MSBitrateController ,1);

obj->analyser=ms_qos_analyser_ref(qosanalyser);

obj->driver=ms_bitrate_driver_ref(driver);

174

obj->last_change.tv_sec=0;

obj->last_change.tv_usec=0;

if(session->rtp.is_dccp){

if(session->rtp.dccp_ccid == 3){

obj->adjust_wait=CCID3_ADJUSTMENT_WAIT_MSEC;

}else if(session->rtp.dccp_ccid == 2){

obj->adjust_wait=CCID2_ADJUSTMENT_WAIT_MSEC;

}

}else{

obj->adjust_wait=0;

}

return obj;

}

static void state_machine(MSBitrateController *obj){

MSRateControlAction action;

switch(obj->state){

case Stable:

obj->stable_count++;

case Init:

ms_qos_analyser_suggest_action(obj->analyser ,&action);

if (action.type!=MSRateControlActionDoNothing){

execute_action(obj,&action);

obj->state=Probing;

}else if (obj->stable_count >=probing_up_interval){

action.type=MSRateControlActionIncreaseQuality;

action.value=10;

execute_action(obj,&action);

obj->state=ProbingUp;

obj->probing_up_count=0;

}

break;

case Probing:

obj->stable_count=0;

if (ms_qos_analyser_has_improved(obj->analyser)){

obj->state=Stable;

}else{

ms_qos_analyser_suggest_action(obj->analyser ,&action);

if (action.type!=MSRateControlActionDoNothing){

execute_action(obj,&action);

}

}

break;

case ProbingUp:

obj->stable_count=0;

175

obj->probing_up_count++;

ms_qos_analyser_suggest_action(obj->analyser ,&action);

if (action.type!=MSRateControlActionDoNothing){

execute_action(obj,&action);

obj->state=Probing;

}else{

/*continue with slow ramp up*/

if (obj->probing_up_count==2){

action.type=MSRateControlActionIncreaseQuality;

action.value=10;

if (execute_action(obj,&action)==-1){

/* we reached the maximum*/

obj->state=Init;

}

obj->probing_up_count=0;

}

}

break;

default:

break;

}

ms_message("MSBitrateController: current state is %s",

state_name(obj->state));

}

void ms_bitrate_controller_process_rtcp(MSBitrateController *obj,

mblk_t *rtcp){

struct timeval tm;

long msec;

gettimeofday(&tm,NULL);

msec=(tm.tv_sec- obj->last_change.tv_sec)*1000;

msec+=(tm.tv_usec- obj->last_change.tv_usec)/1000;

if(msec <= obj->adjust_wait){

return;

}

if (ms_qos_analyser_process_rtcp(obj->analyser ,rtcp)){

state_machine(obj);

}

}

void ms_bitrate_controller_process_rejected_send(

MSBitrateController *obj){

struct timeval tm;

176

long msec;

gettimeofday(&tm,NULL);

msec=(tm.tv_sec- obj->last_change.tv_sec)*1000;

msec+=(tm.tv_usec- obj->last_change.tv_usec)/1000;

if(msec <= obj->adjust_wait){

return;

}

if(ms_qos_analyser_process_rejected_send(obj->analyser)){

state_machine(obj);

}

}

void ms_bitrate_controler_process_bandwidth_update(

MSBitrateController *obj, int value){

MSRateControlAction action;

struct timeval tm;

long msec;

gettimeofday(&tm,NULL);

msec=(tm.tv_sec- obj->last_change.tv_sec)*1000;

msec+=(tm.tv_usec- obj->last_change.tv_usec)/1000;

if(msec <= obj->adjust_wait){

return;

}

obj->state=Stable;

obj->stable_count=0;

action.type=MSRateControlSetBitrate;

action.value=value;

execute_action(obj,&action);

}

mediastreamer2/src/bitratedriver.c
static const int min_video_bitrate=64000;

static const float increase_ramp=1.1;

typedef struct _MSAVBitrateDriver{

MSBitrateDriver parent;

MSBitrateDriver *audio_driver;

MSFilter *venc;

int nom_bitrate;

int bitrate_limit;

int cur_bitrate;

int set_hold;

}MSAVBitrateDriver;

177

static int dec_video_bitrate(MSAVBitrateDriver *obj, const

MSRateControlAction *action){

int new_br;

ms_filter_call_method(obj->venc,MS_FILTER_GET_BITRATE ,&obj->

cur_bitrate);

if(obj->nom_bitrate > obj->cur_bitrate){

obj->nom_bitrate=obj->cur_bitrate;

}

if(obj->nom_bitrate*10 < obj->cur_bitrate){

obj->nom_bitrate=obj->cur_bitrate/2;

}

new_br=((float)obj->nom_bitrate)*(100.0-(float)action->value)

/100.0;

if (new_br<min_video_bitrate){

ms_message("MSAVBitrateDriver: reaching low bound.");

new_br=min_video_bitrate;

}

obj->nom_bitrate=obj->cur_bitrate=new_br;

ms_message("MSAVBitrateDriver: targeting %i bps for video

encoder.",new_br);

ms_filter_call_method(obj->venc,MS_FILTER_SET_BITRATE ,&new_br);

return new_br==min_video_bitrate ? -1 : 0;

}

static int inc_video_bitrate(MSAVBitrateDriver *obj, const

MSRateControlAction *action){

int newbr;

int ret=0;

ms_filter_call_method(obj->venc,MS_FILTER_GET_BITRATE ,&obj->

cur_bitrate);

if(obj->nom_bitrate*10 < obj->cur_bitrate){

obj->nom_bitrate=obj->cur_bitrate/2;

}

if(obj->nom_bitrate > obj->cur_bitrate*10){

obj->nom_bitrate=obj->cur_bitrate*2;

}

newbr=(float)obj->nom_bitrate*(1.0+((float)action->value/100.0)

);

if(newbr<min_video_bitrate){

ret=-1;

newbr=min_video_bitrate;

178

}

if(newbr > obj->bitrate_limit){

newbr=obj->bitrate_limit;

ret=-1;

}

obj->nom_bitrate=obj->cur_bitrate=newbr;

ms_message("MSAVBitrateDriver: increasing bitrate to %i bps for

video encoder.",obj->cur_bitrate);

ms_filter_call_method(obj->venc,MS_FILTER_SET_BITRATE ,&obj->

cur_bitrate);

return ret;

}

static int set_video_bitrate(MSAVBitrateDriver *obj, const

MSRateControlAction *action){

int ret=0;

int proposed_bitrate;

proposed_bitrate=action->value*0.9; //leave 10% for

fluctuations

obj->set_hold++;

if(proposed_bitrate < min_video_bitrate){

proposed_bitrate=min_video_bitrate;

}

if(proposed_bitrate > obj->bitrate_limit){

proposed_bitrate=obj->bitrate_limit;

ret=-1;

}

if(obj->set_hold > 4 &&

((obj->cur_bitrate - proposed_bitrate > obj->cur_bitrate

*0.1) ||

(proposed_bitrate - obj->cur_bitrate > obj->cur_bitrate

*0.2))){

obj->nom_bitrate=obj->cur_bitrate=proposed_bitrate;

obj->set_hold=0;

ms_message("MSAVBitrateDriver: setting bitrate to %i bps for

video encoder.", obj->cur_bitrate);

ms_filter_call_method(obj->venc,MS_FILTER_SET_BITRATE ,&obj->

cur_bitrate);

}

return ret;

}

static int av_driver_execute_action(MSBitrateDriver *objbase,

const MSRateControlAction *action){

179

MSAVBitrateDriver *obj=(MSAVBitrateDriver*)objbase;

int ret=0;

if (obj->bitrate_limit==0){

ms_filter_call_method(obj->venc,MS_FILTER_GET_BITRATE ,&obj->

bitrate_limit);

if (obj->bitrate_limit==0){

ms_warning("MSAVBitrateDriver: Not doing adaptive rate

control on video encoder, it does not seem to support

that.");

return -1;

}

obj->nom_bitrate=obj->bitrate_limit;

}

switch(action->type){

case MSRateControlActionDecreaseBitrate:

ret=dec_video_bitrate(obj,action);

break;

case MSRateControlActionDecreasePacketRate:

if (obj->audio_driver){

ret=ms_bitrate_driver_execute_action(obj->audio_driver ,

action);

}

ret=dec_video_bitrate(obj,action);

break;

case MSRateControlActionIncreaseQuality:

ret=inc_video_bitrate(obj,action);

break;

case MSRateControlActionDoNothing:

break;

case MSRateControlSetBitrate:

ret=set_video_bitrate(obj,action);

break;

}

return ret;

}

180

Appendix B: DCCP CCID 3 Patch
In the process of conducting this research, we identified a bug in DCCP CCID 3’s

handling of loss intervals, which are used to compute the loss event rate.
The bug is that CCID 3 does not update the length of the second loss interval until the

loss starting the third interval. According to the TFRC standard [FHPW08], it should be
updating the length and recomputing the loss event rate after each packet in the loss
interval. As a result, the loss event rate stays constant throughout the entire second loss
interval. We have observed connections maintaining extremely low sending rates for many
minutes as a result of this bug.

We submitted a patch for this issue in [Jer13] and had it accepted into the Linux
DCCP testing tree. We expect this patch to make it into the mainline kernel eventually,
but, as of this writing, we are uncertain when that will happen.

We also backported this patch to the 3.2.0-39 kernel used in our testing. That patch is
included below. It applies cleanly to the mainline 3.2 kernel as well as the Ubuntu
3.2.0-39 kernel used in our tests.

DCCP CCID 3 Second Loss Interval Patch
--- a/net/dccp/ccids/lib/loss_interval.c 2012-04-05 14:03:32.000000000

-0400

+++ b/net/dccp/ccids/lib/loss_interval.c 2013-04-16 12:27:44.712156108

-0400

@@ -153,9 +153,20 @@

new->li_ccval = tfrc_rx_hist_loss_prev(rh)->tfrchrx_ccval;

new->li_is_closed = 0;

- if (++lh->counter == 1)

+ if (++lh->counter == 1) {

lh->i_mean = new->li_length = (*calc_first_li)(sk);

- else {

+ new->li_is_closed = 1;

+ new = tfrc_lh_demand_next(lh);

+ if (unlikely(new == NULL)) {

+ DCCP_CRIT("Cannot allocate/add loss record.");

+ return false;

+ }

+ ++lh->counter;

+ new->li_seqno = tfrc_rx_hist_loss_prev(rh)->tfrchrx_seqno;

+ new->li_ccval = tfrc_rx_hist_loss_prev(rh)->tfrchrx_ccval;

+ new->li_is_closed = 0;

+ new->li_length = 1;

+ } else {

cur->li_length = dccp_delta_seqno(cur->li_seqno , new->li_seqno);

new->li_length = dccp_delta_seqno(new->li_seqno ,

tfrc_rx_hist_last_rcv(rh)->tfrchrx_seqno) + 1;

!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!
!

!
!

Thesis and Dissertation Services

	Abstract
	Dedication
	Acknowledgments
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Real-time Streaming Media Applications
	Congestion Collapse and Fairness
	The Transmission Control Protocol
	The User Datagram Protocol
	The Datagram Congestion Control Protocol
	Research Aims
	Thesis Structure

	Background
	Media Encoding and Encapsulation
	Congestion Control
	Literature Review

	Experimental Setup
	Linphone
	Application Considerations for DCCP
	The Linux Kernel DCCP Implementation
	Video Quality Analysis
	Experiment Configuration

	Results and Discussion
	Testbed Experiments
	Short Distance Internet Experiments
	Bitrate Adjustment Interval Analysis
	Long Distance Internet Experiments

	Conclusions and Future Work
	Conclusions
	Future Work

	References
	Appendix A: Linphone Modifications
	DCCP Support
	Bitrate Control

	Appendix B: DCCP CCID 3 Patch

